Computational Methods, Seismic Protection, Hybrid Testing and Resilience in Earthquake Engineering


Book Description

The book is a tribute to the research contribution of Professor Andrei Reinhorn in the field of earthquake engineering. It covers all the aspects connected to earthquake engineering starting from computational methods, hybrid testing and control, resilience and seismic protection which have been the main research topics in the field of earthquake engineering in the last 30 years. These were all investigated by Prof. Reinhorn throughout his career. The book provides the most recent advancements in these four different fields, including contributions coming from six different countries giving an international outlook to the topics.




Computational Methods in Earthquake Engineering


Book Description

This book provides an insight on advanced methods and concepts for the design and analysis of structures against earthquake loading. This second volume is a collection of 28 chapters written by leading experts in the field of structural analysis and earthquake engineering. Emphasis is given on current state-of-the-art methods and concepts in computing methods and their application in engineering practice. The book content is suitable for both practicing engineers and academics, covering a wide variety of topics in an effort to assist the timely dissemination of research findings for the mitigation of seismic risk. Due to the devastating socioeconomic consequences of seismic events, the topic is of great scientific interest and is expected to be of valuable help to scientists and engineers. The chapters of this volume are extended versions of selected papers presented at the COMPDYN 2011 conference, held in the island of Corfu, Greece, under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS).




Computational Methods in Earthquake Engineering


Book Description

This book provides an insight in advanced methods and concepts for structural analysis and design against seismic loading. The book consists of 25 chapters dealing with a wide range of timely issues in contemporary Earthquake Engineering. In brief, the topics covered are: collapse assessment, record selection, effect of soil conditions, problems in seismic design, protection of monuments, earth dam structures and liquid containers, numerical methods, lifetime assessment, post-earthquake measures. A common ground of understanding is provided between the communities of Earth Sciences and Computational Mechanics towards mitigating seismic risk. The topic is of great social and scientific interest, due to the large number of scientists and practicing engineers currently working in the field and due to the great social and economic consequences of earthquakes.




Computational Methods in Earthquake Engineering


Book Description

This is the third book in a series on Computational Methods in Earthquake Engineering. The purpose of this volume is to bring together the scientific communities of Computational Mechanics and Structural Dynamics, offering a wide coverage of timely issues on contemporary Earthquake Engineering. This volume will facilitate the exchange of ideas in topics of mutual interest and can serve as a platform for establishing links between research groups with complementary activities. The computational aspects are emphasized in order to address difficult engineering problems of great social and economic importance.




Damage-Based Earthquake Engineering


Book Description

Over the life of a structure, the smaller but more frequent earthquakes contribute more to the cumulative damage than the larger earthquakes on which structural design is traditionally based. This is a quantitative argument in favour of designing structures beyond what the codes require for life-safety. This book presents a computational method to evaluate the damage sustained by a building over its lifetime in a seismic environment. The ability to estimate future damage is relevant to a pair of current trends in earthquake engineering: a growing interest for preventing damage on top of protecting the public, and development of performance-based design. The proposed method combines probabilistic principles with traditional structural analysis, which makes it readily applicable to evaluation of planned structures in an engineering office. The analytical models, computational steps and supporting data used to produce an estimate of damage are discussed, and variants of the method with different run time and accuracy are considered. As an example of application to structural design, the book proposes a method to optimise placement of viscous dampers in buildings by minimising a life-cycle cost that includes the investment in damping and the losses due to future damage. Along with the results obtained in the course of other examples, the optimal solutions support a shift toward more resilient structures designed to mitigate structural and nonstructural damage beyond the traditional life-safety requirements.




Introduction to Computational Earthquake Engineering


Book Description

This book introduces new research topics in earthquake engineering through the application of computational mechanics and computer science. The topics covered discuss the evaluation of earthquake hazards such as strong ground motion and faulting through applying advanced numerical analysis methods, useful for estimating earthquake disasters. These methods, based on recent progress in solid continuum mechanics and computational mechanics, are summarized comprehensively for graduate students and researchers in earthquake engineering. The coverage includes stochastic modeling as well as several advanced computational earthquake engineering topics. Contents:Preliminaries:Solid Continuum MechanicsFinite Element MethodStochastic ModelingStrong Ground Motion:The Wave Equation for SolidsAnalysis of Strong Ground MotionSimulation of Strong Ground MotionFaulting:Elasto-Plasticity and Fracture MechanicsAnalysis of FaultingSimulation of FaultingBEM Simulation of FaultingAdvanced Topics:Integrated Earthquake SimulationUnified Visualization of Earthquake SimulationStandardization of Earthquake Resistant DesignAppendices:Earthquake MechanismsAnalytical MechanicsNumerical Techniques of Solving Wave EquationUnified Modeling Language Readership: Graduate students and researchers in earthquake engineering; researchers in computational mechanics and computer science.




Structural Dynamic Systems Computational Techniques and Optimization


Book Description

Conventional seismic design has been based on structural strength in the initial design of structures, resulting in lateral force resisting systems with sufficient strength to be able to absorb and dissipate the seismic. For important structures such as urban high speed road systems, high rise buildings, hospitals, airports and other essential structures which must be quite functional after an earthquake, modern seismic structural design techniques have been developed with a view toward eliminating or significantly reducing seismic damage to such structures. This volume is a comprehensive treatment of the issues involved in modern seismic design techniques for structure with a view to significantly enhancing their capability of surviving earthquakes to an adequate degree, i.e., enhancing the ability of structural systems to withstand high level earthquakes.




Intelligent Computational Paradigms in Earthquake Engineering


Book Description

"This book contains contributions that cover a wide spectrum of very important real-world engineering problems, and explores the implementation of neural networks for the representation of structural responses in earthquake engineering. It assesses the efficiency of seismic design procedures and describes the latest findings in intelligent optimal control systems and their applications in structural engineering"--Provided by publisher.




Computational Structural Dynamics and Earthquake Engineering


Book Description

The increasing necessity to solve complex problems in Structural Dynamics and Earthquake Engineering requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest scientific developments in Computational Dynamics, Stochastic Dynam




Computational Methods in Earthquake Engineering


Book Description

This book provides an insight on advanced methods and concepts for the design and analysis of structures against earthquake loading. This second volume is a collection of 28 chapters written by leading experts in the field of structural analysis and earthquake engineering. Emphasis is given on current state-of-the-art methods and concepts in computing methods and their application in engineering practice. The book content is suitable for both practicing engineers and academics, covering a wide variety of topics in an effort to assist the timely dissemination of research findings for the mitigation of seismic risk. Due to the devastating socioeconomic consequences of seismic events, the topic is of great scientific interest and is expected to be of valuable help to scientists and engineers. The chapters of this volume are extended versions of selected papers presented at the COMPDYN 2011 conference, held in the island of Corfu, Greece, under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS).