Control of Flow Separation from the Deflected Flap of a High-lift Airfoil Using Multiple Dielectric Barrier Discharge (DBD) Plasma Actuators


Book Description

Abstract: In current wing design, multiple flaps are incorporated into the trailing edge to allow mixing of high and low pressure sides to reduce flow separation. These flaps reduce the efficiency by adding weight and complexity to the aircraft. A single hinged flap would reduce these inefficiencies but is more susceptible to flow separation. Active flow control is a means by which the fluid flow over a body is deliberately altered and can be altered such that it becomes less likely to separate from the object. By energizing the flow, the degree of separation of the flow can be controlled, and this inherently controls lift. Dielectric barrier discharge (DBD) plasma actuators are a form of active flow control. These actuators are created by asymmetrically aligning two electrodes and adding a dielectric layer between the electrodes. When the electrodes are electrically connected, ionized air (plasma) travels from the exposed electrode towards the covered electrode. Collisions occur between the plasma and neutral air over the body, and momentum is transferred to the neutral air, effectively energizing it. The purpose of this study is to examine the lift enhancement and flow control authority that multiple DBD plasma actuators have on a high-lift airfoil when compared to the flow exhibited by non-controlled and single DBD plasma actuator controlled cases. Electrodes were mounted onto a simplified NASA Energy Efficient Transport airfoil near the flap. The airfoil was tested in a closed, recirculating wind tunnel operating at a Reynolds number of 240,000, 20° flap deflection angle and 0° degree angle of incidence. The actuators were independently powered in order to determine the most effective input parameters. Using multiple actuators operated in-phase has increased the lift and has delayed flow separation on the trailing edge flap when compared to baseline and single actuation cases.




Encyclopedia of Plasma Technology - Two Volume Set


Book Description

Technical plasmas have a wide range of industrial applications. The Encyclopedia of Plasma Technology covers all aspects of plasma technology from the fundamentals to a range of applications across a large number of industries and disciplines. Topics covered include nanotechnology, solar cell technology, biomedical and clinical applications, electronic materials, sustainability, and clean technologies. The book bridges materials science, industrial chemistry, physics, and engineering, making it a must have for researchers in industry and academia, as well as those working on application-oriented plasma technologies. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]




Flow Control Techniques and Applications


Book Description

Master the theory, applications and control mechanisms of flow control techniques.




Aeronautics and Astronautics


Book Description

In its first centennial, aerospace has matured from a pioneering activity to an indispensable enabler of our daily life activities. In the next twenty to thirty years, aerospace will face a tremendous challenge - the development of flying objects that do not depend on fossil fuels. The twenty-three chapters in this book capture some of the new technologies and methods that are currently being developed to enable sustainable air transport and space flight. It clearly illustrates the multi-disciplinary character of aerospace engineering, and the fact that the challenges of air transportation and space missions continue to call for the most innovative solutions and daring concepts.










Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control*supported by National Natural Science Foundation of China (No. 21276036), Liaoning Provincial Natural Science Foundation of China (No. 2015020123) and the Fundamental Research Funds for the Central Universities of China (No. 3132015154).


Book Description

Abstract: Unsteady dielectric barrier discharge (DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil. The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0. It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5 as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles, indicating a better flow control performance. By comparing the lift coefficients and the threshold voltages, an optimum duty cycle is determined as 0.25 by which the maximum lift coefficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle. The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle.




Case Study


Book Description

Boundary Labs, LLC is an early-stage company composed of three students at Case Western Reserve University which aimed to evaluate the feasibility of commercialization of a novel dielectric barrier discharge (DBD) plasma actuator as an active flow control (AFC) method in wind turbines. The hypothesized benefits of DBD plasma actuators for AFC include improved energy capture from wind, low cost, and ease of implementation. This thesis is a two-part case study. The first part emulates a Small Business Innovation Research (SBIR) Phase I Proposal for the technology and includes discussions arguing that a strong commercial potential for the proposed technology exists in the United States and that technical development is feasible. The second part includes miscellaneous sections outside the scope of an SBIR proposal, leading to a discussion of the Boundary Labs team decision to discontinue development of this technology.