Compressibility Effects on Dynamic Stall of Airfoils Undergoing Rapid Transient Pitching Motion


Book Description

The research was carried out in the Compressible Dynamic Stall Facility, CDSF, at the Fluid Mechanics Laboratory (FML) of NASA Ames Research Center. The facility can produce realistic nondimensional pitch rates experienced by fighter aircraft, which on model scale could be as high as 3600/sec. Nonintrusive optical techniques were used for the measurements. The highlight of the effort was the development of a new real time interferometry method known as Point Diffraction Interferometry - PDI, for use in unsteady separated flows. This can yield instantaneous flow density information (and hence pressure distributions in isentropic flows) over the airfoil. A key finding is that the dynamic stall vortex forms just as the airfoil leading edge separation bubble opens-up. A major result is the observation and quantification of multiple shocks over the airfoil near the leading edge. A quantitative analysis of the PDI images shows that pitching airfoils produce larger suction peaks than steady airfoils at the same Mach number prior to stall. The peak suction level reached just before stall develops is the same at all unsteady rates and decreases with increase in Mach number. The suction is lost once the dynamic stall vortex or vortical structure begins to convect. Based on the knowledge gained from this preliminary analysis of the data, efforts to control dynamic stall were initiated. The focus of this work was to arrive at a dynamically changing leading edge shape that produces only 'acceptable' airfoil pressure distributions over a large angle of attack range. Chandrasekhara, M. S. and Platzer, M. F. Ames Research Center AF-AFOSR-0012-90; AF-AFOSR-0007-91; AF-AFOSR-0004-92; AF PROJ. 2307...










Closed-Loop Control Systems for Unsteady Forebodies and Three-Dimensional Pitching Airfoils at High Reynolds Number


Book Description

Progress made on closed loop control systems with application to aircraft forebodies and pitching airfoils is described in this report. The three main areas of the investigation included: (1) development of suitable control law algorithms for control of pitching wings and forebodies, (2) vorticity control on three-dimensional swept wings at high angles of attack, and (3) vortex control on forebody models at high angles of attack with unsteady motions. The three areas were investigated in parallel by laboratory experiment and numerical simulations. The numerical simulations examined the ability of distributed suction to control the flow over an airfoil undergoing a pitch-up motion and sinusoidal oscillation. Experiments on the feasibility of controlling dynamic stall using leading-edge suction were conducted. By studying the influence of different parameters such as pitch rate, Reynolds number, suction timing, suction slot size and location, a scaling law for the suction flow rate was developed. The third area of. investigation involved closed-loop control of forebody flow vortex asymmetry. By incorporating a closed- loop system, the desired side force could be maintained under a variety of different pitching. The relative performance of linear, nonlinear and neural network control algorithms was explored.




Vortical Flows


Book Description

This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.




Active Flow and Combustion Control 2014


Book Description

The book reports on the latest theoretical and experimental advances in the field of active flow and combustion control. It covers new developments in actuator technology and sensing, in robust and optimal open- and closed-loop control, as well as in model reduction for control. It collects contributions presented during the third edition of the Active Flow and Combustion Control conference, held in September 10-12, 2014 at the Technische Universität Berlin (Germany). This conference, as well as the research presented in the book, have been supported by the collaborative research center SFB 1029 -Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamics, funded by the DFG (German Research Foundation).




Advances of Science and Technology


Book Description

This book constitutes the refereed post-conference proceedings of the 6th International Conference on Advancement of Science and Technology, ICAST 2018, which took place in Bahir Dar, Ethiopia, in October 2018. The 47 revised full papers were carefully reviewed and selected from 71 submissions. The papers present economic and technologic developments in modern societies in five tracks: agro-processing industries for sustainable development, water resources development for the shared vision in blue Nile basin, IT and computer technology innovation, recent advances in electrical and computer engineering, progresses in product design and system optimization.




Recent Progress in Flow Control for Practical Flows


Book Description

This book explores the outcomes on flow control research activities carried out within the framework of two EU-funded projects focused on training-through-research of Marie Sklodowska-Curie doctoral students. The main goal of the projects described in this monograph is to assess the potential of the passive- and active-flow control methods for reduction of fuel consumption by a helicopter. The research scope encompasses the fields of structural dynamics, fluid flow dynamics, and actuators with control. Research featured in this volume demonstrates an experimental and numerical approach with a strong emphasis on the verification and validation of numerical models. The book is ideal for engineers, students, and researchers interested in the multidisciplinary field of flow control.