Hydraulic Fracture Modeling


Book Description

Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today's petroleum engineer with an all-inclusive product to characterize and optimize today's more complex reservoirs. - Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods - Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics - Provides today's petroleum engineer with model validation tools backed by real-world case studies




Optimization of Multistage Hydraulic Fracturing Treatment for Maximization of the Tight Gas Productivity


Book Description

Hydraulic fracturing is essential technology for the development of unconventional resources such as tight gas. So far, there are no numerical tools which can optimize the whole process from geological modeling, hydraulic fracturing until production simulation with the same 3D model with consideration of the thermo-hydro-mechanical coupling. In this dissertation, a workflow and a numerical tool chain were developed for design and optimization of multistage hydraulic fracturing in horizontal well regarding a maximum productivity of the tight gas wellbore. After the verification a full 3D reservoir model is generated based on a real tight gas field in the North German Basin. Through analysis of simulation results, a new calculation formula of FCD was proposed, which takes the proppant position and concentration into account and can predict the gas production rate more accurately. However, not only FCD but also proppant distribution and hydraulic connection of stimulated fractures to the well, geological structure and the interaction between fractures are determinant for the gas production volume. Through analysis the numerical results of sensitivity analysis and optimization variations, there is no unique criterion to determine the optimal number and spacing of the fractures, it should be analyzed firstly in detail to the actual situation and decided then from case to case.




Unconventional Reservoir Geomechanics


Book Description

A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.




Hydraulic Fracturing in Unconventional Reservoirs


Book Description

Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis, Second Edition, presents the latest operations and applications in all facets of fracturing. Enhanced to include today's newest technologies, such as machine learning and the monitoring of field performance using pressure and rate transient analysis, this reference gives engineers the full spectrum of information needed to run unconventional field developments. Covering key aspects, including fracture clean-up, expanded material on refracturing, and a discussion on economic analysis in unconventional reservoirs, this book keeps today's petroleum engineers updated on the critical aspects of unconventional activity. - Helps readers understand drilling and production technology and operations in shale gas through real-field examples - Covers various topics on fractured wells and the exploitation of unconventional hydrocarbons in one complete reference - Presents the latest operations and applications in all facets of fracturing







Exploitation of Unconventional Oil and Gas Resources


Book Description

The stimulation of unconventional hydrocarbon reservoirs is proven to improve their productivity to an extent that has rendered them economically viable. Generally, the stimulation design is a complex process dependent on intertwining factors such as the history of the formation, rock and reservoir fluid type, lithology and structural layout of the formation, cost, time, etc. A holistic grasp of these can be daunting, especially for people without sufficient experience and/or expertise in the exploitation of unconventional hydrocarbon reserves. This book presents the key facets integral to producing unconventional resources, and how the different components, if pieced together, can be used to create an integrated stimulation design. Areas covered are as follows: • stimulation methods, • fracturing fluids, • mixing and behavior of reservoir fluids, • assessment of reservoir performance, • integration of surface drilling data, • estimation of geomechanical properties and hydrocarbon saturation, and • health and safety. Exploitation of Unconventional Oil and Gas Resources: Hydraulic Fracturing and Other Recovery and Assessment Techniques is an excellent introduction to the subject area of unconventional oil and gas reservoirs, but it also complements existing information in the same discipline. It is an essential text for higher education students and professionals in academia, research, and the industry.




Numerical Simulation of Complex Hydraulic Fracture Development by Coupling Geo-mechanical and Reservoir Simulator


Book Description

Hydraulic fracturing is one of the standard techniques adopted by oil and gas industries to enhance production in unconditional reservoirs. Reservoir properties and treatment designs have a significant influence on the effectiveness of hydraulic fracturing treatments. Extensive studies on the mechanism of hydraulic fracturing have been conducted to optimize the hydraulic fracturing design. Recent advances in fracture diagnostic technology have brought new insights to the complex fracture geometry. Numerical simulation is an economical approach to investigate the generation of fracture geometry and its effect on post-treatment production enhancement. This work proposes a workflow to study the fracture complexity through coupling the geomechanical simulator Irazu and the reservoir simulator CMG. The geo-mechanical simulator is devised to simulate the hydraulic fracturing process employing the hybrid finite-discrete element method while the reservoir simulator CMG is used for the reservoir post-treatment production forecast.




Numerical Modeling of Complex Hydraulic Fracture Development in Unconventional Reservoirs


Book Description

Successful creations of multiple hydraulic fractures in horizontal wells are critical for economic development of unconventional reservoirs. The recent advances in diagnostic techniques suggest that multi-fracturing stimulation in unconventional reservoirs has often caused complex fracture geometry. The most important factors that might be responsible for the fracture complexity are fracture interaction and the intersection of the hydraulic and natural fracture. The complexity of fracture geometry results in significant uncertainty in fracturing treatment designs and production optimization. Modeling complex fracture propagation can provide a vital link between fracture geometry and stimulation treatments and play a significant role in economically developing unconventional reservoirs. In this research, a novel fracture propagation model was developed to simulate complex hydraulic fracture propagation in unconventional reservoirs. The model coupled rock deformation with fluid flow in the fractures and the horizontal wellbore. A Simplified Three Dimensional Displacement Discontinuity Method (S3D DDM) was proposed to describe rock deformation, calculating fracture opening and shearing as well as fracture interaction. This simplified 3D method is much more accurate than faster pseudo-3D methods for describing multiple fracture propagation but requires significantly less computational effort than fully three-dimensional methods. The mechanical interaction can enhance opening or induce closing of certain crack elements or non-planar propagation. Fluid flow in the fracture and the associated pressure drop were based on the lubrication theory. Fluid flow in the horizontal wellbore was treated as an electrical circuit network to compute the partition of flow rate between multiple fractures and maintain pressure compatibility between the horizontal wellbore and multiple fractures. Iteratively and fully coupled procedures were employed to couple rock deformation and fluid flow by the Newton-Raphson method and the Picard iteration method. The numerical model was applied to understand physical mechanisms of complex fracture geometry and offer insights for operators to design fracturing treatments and optimize the production. Modeling results suggested that non-planar fracture geometry could be generated by an initial fracture with an angle deviating from the direction of the maximum horizontal stress, or by multiple fracture propagation in closed spacing. Stress shadow effects are induced by opening fractures and affect multiple fracture propagation. For closely spaced multiple fractures growing simultaneously, width of the interior fractures are usually significantly restricted, and length of the exterior fractures are much longer than that of the interior fractures. The exterior fractures receive most of fluid and dominate propagation, resulting in immature development of the interior fractures. Natural fractures could further complicate fracture geometry. When a hydraulic fracture encounters a natural fracture and propagates along the pre-existing path of the natural fracture, fracture width on the natural fracture segment will be restricted and injection pressure will increase, as a result of stress shadow effects from hydraulic fracture segments and additional closing stresses from in-situ stress field. When multiple fractures propagate in naturally fracture reservoirs, complex fracture networks could be induced, which are affected by perforation cluster spacing, differential stress and natural fracture patterns. Combination of our numerical model and diagnostic methods (e.g. Microseismicity, DTS and DAS) is an effective approach to accurately characterize the complex fracture geometry. Furthermore, the physics-based complex fracture geometry provided by our model can be imported into reservoir simulation models for production analysis.




Simulation and Production Evaluation of Multiple-stage Hydraulic Fracturing in Horizontal Wellbores


Book Description

Shale formations have globally emerged as the sustainable hydrocarbon resources in the advent of the technologies for the economic production from these formations: horizontal drilling combined with multiple-stage hydraulic fracturing. The viable production from these resources requires a maximized stimulated reservoir volume encompassing a complex induced fracture network, which is highly dependent on the stimulation design. The optimization of the ultimate recovery requires integrated fracturing models with reservoir models in virtue of the limitations on the field data acquisition and their reliability, the high-cost of re-stimulation plans, and low-fidelity current reservoir simulation workflows. We proposed 2D and 3D hydraulic-fracturing models on the basis of the cohesive zone model (CZM) and extended finite element method (XFEM) with a combination of the following capabilities: (1) inclusion of fracture intersections via pore-pressure coupling; (2) fully-coupled poroelasticity in matrix, continuum-based leakoff, and slit flow in fracture(s) with the cohesive behavior for fracture growth. These models were validated in comparison with KGD solution, and were employed for the hydraulic-fracturing design and understanding microseismic event distributions. Moreover, the output of these models in a specific 2D case was integrated with a reservoir simulation workflow for the prediction of long-term production from the induced fracture network. Our 2D and 3D fracture-intersection cases demonstrate the significant role of the following parameters in the growth pattern of fractures upon intersection: (1) the length of the initially open segment of the natural fracture at the intersection; (2) the horizontal stress contrast; (3) the distance between the injection point and the intersection. Notably, hydraulic fracturing in higher depths with higher horizontal stress contrasts and closer injection points to the intersection causes more extensive natural-fracture opening and shear slippage. Also, we demonstrated the application of the proposed 3D fracture intersection model for further understanding of the anomalies observed in the Vaca Muerta Shale. This study revealed that the microseismic events at shallower depths, later times, and deviated from the expected planar distribution are mainly associated with shear slippage along weak interfaces due to the induced stresses by hydraulic fracturing. Thereby, our explicit modeling of fluid infiltration into the natural fracture(s) at the intersection leads to better understanding of the nature of microseismic events. Our multiple-stage, multiple-wellbore, hydraulic-fracturing model for naturally fractured reservoirs includes the operational and field components during the shale stimulations such as perforation tunnel length distribution, horizontal wellbores, stochastically-retrieved fully-cemented natural-fracture network, plugs for the stage stimulation (via connector elements), and external stimulation scenarios (controlled by programming the connector elements in an external user subroutine). The application of this model on synthetic cases shows the following: (1) sequential fracturing with limited number of clusters per stage leads to more control on the cluster stimulation in the presence of the non-uniform perforation tunnel length distribution and wellbore model; (2) proportional cluster efficiency with the perforation tunnel length (promoting the consistent perforation technology); (3) over-estimation of the cluster stimulation in the absence of the wellbore model and/or the natural-fracture network; and (4) more-viscous fracturing fluids conclude less complex induced fracture network (in agreement with the common field observations). The initial natural-fracture network in this model was retrieved from the proposed object-based method. Also, the transfer of the induced fracture network into an embedded discrete fracture model is featured by the higher fidelity in the estimation of long-term gas production from naturally fractured reservoirs. For the investigation of the effect of in-situ stresses on the reservoir engineering problems, we implemented the coupling of a geomechanics module with the UTCOMP reservoir simulator. We first validated this implementation via comparing the results with GPAS and CMG results at various cases. Our improvements in the geomechanics module (lowering the frequency of calling the geomechanics module and the order of the finite-element shape functions) significantly reduced the computational expenses while maintaining the solution accuracy. Overall, water flooding shows more sensitivity to the number of the reservoir-simulation time steps per geomechanics call than gas flooding cases (e.g., CO2 injection). Our reservoir simulation model for re-fracturing included various injection and production steps to show the effect of the re-fracturing fluid injection in a depleted formation on the ultimate recovery. This study showed the significant effect of the re-fracturing water injection in production via changing a single-phase to two-phase gas flow regime and deeper water invasion into the matrix due to the pressure depletion (after primary production)