DDT of Hot, Thermally Damaged PBX 9501 in Heavy Confinement


Book Description

The research presented examines DDT of cylinders of PBX 9501 damaged above 180 C in heavy confinement for 0-3 hours and end-ignited or ramped until self-ignition (cookoff) occurred. Progression of luminous reaction was observed by streak photography through a glass-filled slit running the length of the cylinder. Post-mortem analysis of the steel DDT tubes was also done for correlation with the optical records. Results indicate that repeatable, Type I DDT was observed to occur in hot, thermally damaged PBX 9501 with low levels of porosity. It was demonstrated that multiple parameters affect DDT behavior, most likely in a coupled fashion. These parameters are porosity, ignition temperature and thermal soak duration. Conditions leading up to cookoff were shown to sensitize the HE to DDT by increasing likelihood and decreasing run length. Over the range of porosities (0-37%) and ignition temperatures (180-235 C), run lengths and detonation velocities varied, respectively, from approximately 22-109 mm and 6.0-8.3 mm [mu]s−1. This work fills a valuable and realistic space in the understanding of high explosive violent reaction, including DDT, in abnormal thermal environments.




Violent Reactions and DDT in Hot, Thermally Damaged HMX-Based PBXs


Book Description

Conventional high explosives (e.g. PBX 9501, LX-07) have been observed to react violently following thermal insult: (1) Fast convective and compressive burns (HEVR); (2) Thermal explosions (HEVR); and (3) Deflagration-to-detonation transition (DDT). No models exist that sufficiently capture/predict these complex multiphase and multiscale behaviors. For now, research is focused on identifying vulnerabilities and factors that control this behavior.




Deflagration Behavior of PBX 9501 at Elevated Temperature and Pressure


Book Description

We report the deflagration behavior of PBX 9501 at pressures up to 300 MPa and temperatures of 150-180 C where the sample has been held at the test temperature for several hours before ignition. The purpose is to determine the effect on the deflagration behavior of material damage caused by prolonged exposure to high temperature. This conditioning is similar to that experienced by an explosive while it being heated to eventual explosion. The results are made more complicated by the presence of a significant thermal gradient along the sample during the temperature ramp and soak. Three major conclusions are: the presence of nitroplasticizer makes PBX 9501 more thermally sensitive than LX-04 with an inert Viton binder; the deflagration behavior of PBX 9501 is more extreme and more inconsistent than that of LX-04; and something in PBX 9501 causes thermal damage to 'heal' as the deflagration proceeds, resulting in a decelerating deflagration front as it travels along the sample.




Explosive Effects and Applications


Book Description

This is a broad-based text on the fundamentals of explosive behavior and the application of explosives in civil engineering, industrial processes, aerospace applications, and military uses.




Nano-Energetic Materials


Book Description

This book presents the latest research on the area of nano-energetic materials, their synthesis, fabrication, patterning, application and integration with various MEMS systems and platforms. Keeping in mind the applications for this field in aerospace and defense sectors, the articles in this volume contain contributions by leading researchers in the field, who discuss the current challenges and future perspectives. This volume will be of use to researchers working on various applications of high-energy research.




High Energy Density Materials


Book Description




Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties


Book Description

This book summarizes science and technology of a new generation of high-energy andinsensitive explosives. The objective is to provide professionals with comprehensiveinformation on the synthesis and the physicochemical and detonation properties ofthe explosives. Potential technologies applicable for treatment of contaminated wastestreams from manufacturing facilities and environmental matrices are also be included.This book provides the reader an insight into the depth and breadth of theoreticaland empirical models and experimental techniques currently being developed in thefield of energetic materials. It presents the latest research by DoD engineers andscientists, and some of DoD’s academic and industrial researcher partners. The topicsexplored and the simulations developed or modified for the purposes of energetics mayfind application in other closely related fields, such as the pharmaceutical industry.One of the key features of the book is the treatment of wastewaters generated duringmanufacturing of these energetic materials.




Combustion of Energetic Materials


Book Description

This edited book contains state-of-the-art information associated with energetic material combustion. There are twelve topical areas, including: Reaction Kinetics of Energetic Materials (Solid, Liquid, and Gel Propellants); Recycling of Energetic Materials; Combustion Performance of Hybrid and Solid Rocket Motors; Ignition and Combustion of Energetic Materials; Energetic Material Defects and Rocket Engine Flowfields; Metal Combustion; Pyrolysis and Combustion Processes of New Ingredients and Applications; Theoretical Modeling and Numerical Simulation of Combustion Processes of Energetic Materials; Combustion Diagnostic Techniques; Propellant and Rocket Motor Stability; Commercial Applications of Energetic Materials (Airbags, Gas Generators, etc.); and Thermal Insulation and Ablation Processes.




Manufacturing Engineering Education


Book Description

Manufacturing Engineering Education includes original and unpublished chapters that develop the applications of the manufacturing engineering education field. Chapters convey innovative research ideas that have a prodigious significance in the life of academics, engineers, researchers and professionals involved with manufacturing engineering. Today, the interest in this subject is shown in many prominent global institutes and universities, and the robust momentum of manufacturing has helped the U.S. economy continue to grow throughout 2014. This book covers manufacturing engineering education, with a special emphasis on curriculum development, and didactic aspects. Includes original and unpublished chapters that develop the applications of the manufacturing engineering education principle Applies manufacturing engineering education to curriculum development Offers research ideas that can be applied to the work of academics, engineers, researchers and professionals




Impactful Times


Book Description

This book presents a history of shock compression science, including development of experimental, material modeling, and hydrodynamics code technologies over the past six decades at Sandia National Laboratories. The book is organized into a discussion of major accomplishments by decade with over 900 references, followed by a unique collection of 45 personal recollections detailing the trials, tribulations, and successes of building a world-class organization in the field. It explains some of the challenges researchers faced and the gratification they experienced when a discovery was made. Several visionary researchers made pioneering advances that integrated these three technologies into a cohesive capability to solve complex scientific and engineering problems. What approaches worked, which ones did not, and the applications of the research are described. Notable applications include the turret explosion aboard the USS Iowa and the Shoemaker-Levy comet impact on Jupiter. The personal anecdotes and recollections make for a fascinating account of building a world-renowned capability from meager beginnings. This book will be inspiring to the expert, the non expert, and the early-career scientist. Undergraduate and graduate students in science and engineering who are contemplating different fields of study should find it especially compelling.