Deflagration Behavior of PBX 9501 at Elevated Temperature and Pressure


Book Description

We report the deflagration behavior of PBX 9501 at pressures up to 300 MPa and temperatures of 150-180 C where the sample has been held at the test temperature for several hours before ignition. The purpose is to determine the effect on the deflagration behavior of material damage caused by prolonged exposure to high temperature. This conditioning is similar to that experienced by an explosive while it being heated to eventual explosion. The results are made more complicated by the presence of a significant thermal gradient along the sample during the temperature ramp and soak. Three major conclusions are: the presence of nitroplasticizer makes PBX 9501 more thermally sensitive than LX-04 with an inert Viton binder; the deflagration behavior of PBX 9501 is more extreme and more inconsistent than that of LX-04; and something in PBX 9501 causes thermal damage to 'heal' as the deflagration proceeds, resulting in a decelerating deflagration front as it travels along the sample.




Steady Deflagration of PBX-9501 Within a Copper Cylinder


Book Description

A copper cylinder cook-off experiment has been designed to cause steady deflagration in PBX-9501 explosive material. The design is documented and preliminary copper expansion results are presented for steady deflagration with a reaction speed of 1092 +/- 24 m/s. The expansion of reaction products from the detonation of an explosive is something that is well understood, and reasonably simulated using documented equations of state (EOS) for many explosives of interest. These EOS were historically measured using a 'standard' copper cylinder test design; this design comprised an annealed, oxygen-free high conductivity (OFHC) copper tube filled with explosive material and detonated from one end. Expansion of the copper wall was measured as a function of time using either a streak camera (for classic testing), or more recently using laser velocimetry techniques. Expansion data were then used to derive the EOS in various preferred forms - which are not discussed here for the sake of brevity. [Catanach, et. al., 1999] When an explosive deflagrates rather than detonating, simulation becomes more difficult. Reaction products are released on a slower time scale, and the reactions are much more affected by the geometry and local temperature within the reaction environment. It is assumed that the standard, documented EOS will no longer apply. In an effort to establish a first order approximation of deflagration product behavior, a cook-off test has been designed to cause steady deflagration in PBX-9501 explosive material, and to record the copper expansion profile as a function of time during this test. The purpose of the current paper is to document the initial test design and report some preliminary results. A proposal for modification of the design is also presented.




Deflagration Behavior of HMX-Based Explosives at High Temperatures and Pressures


Book Description

We report the deflagration behavior of several HMX-based explosives at pressure from 10-600 MPa and temperatures from 20-180 C. We have made laminar burn rate measurements with the LLNL High Pressure Strand Burner, in which burn wires are used to record the time-of-arrival of the burn front in the cylindrical sample as a function of pressure. The explosive samples are 6.4 mm in diameter and 63 mm long, with ten burn wires embedded at different positions in the sample. Burning on the cylindrical surface is inhibited with an epoxy layer. With this direct measurement we do not have to account for product gas equation of state or heat losses in the system, and the burn wires allow detection of irregular burning. We find that formulation details are very important to overall deflagration behavior - the presence of 10% or less by weight of binder leads to physical deconsolidation and rapid deflagration at high pressures, and a larger particle size distribution leads to slower deflagration. High temperatures have a relatively minor effect on the deflagration rate until the beta-to-delta phase transition temperature is reached, beyond which the deflagration rate increases approximately 40-fold.




PBXN-9 Ignition Kinetics and Deflagration Rates


Book Description

The ignition kinetics and deflagration rates of PBXN-9 were measured using specially designed instruments at LLNL and compared with previous work on similar HMX based materials. Ignition kinetics were measured based on the One Dimensional Time-to-Explosion combined with ALE3D modeling. Results of these experiments indicate that PBXN-9 behaves much like other HMX based materials (i.e. LX-04, LX-07, LX-10 and PBX-9501) and the dominant factor in these experiments is the type of explosive, not the type of binder/plasticizer. In contrast, the deflagration behavior of PBXN-9 is quite different from similar high weight percent HMX based materials (i.e LX-10, LX-07 and PBX-9501). PBXN-9 burns in a laminar manner over the full pressure range studied (0-310 MPa) unlike LX-10, LX-07, and PBX-9501. The difference in deflagration behavior is attributed to the nature of the binder/plasticizer alone or in conjunction with the volume of binder present in PBXN-9.




Influence of Temperature on the High-strain-rate Mechanical Behavior of PBX 9501


Book Description

High-strain-rate (2000 s−1) compression measurements utilizing a specially-designed Split-Hopkinson-Pressure Bar have been obtained as a function of temperature from -55 to +50°C for the plastic-bonded explosive PBX 9501. The PBX 9501 high-strain-rate data was found to exhibit similarities to other energetic, propellant, and polymer-composite materials as a function of strain rate and temperature. The high-rate response of the energetic was found to exhibit increased ultimate compressive fracture strength and elastic loading modulus with decreasing temperature. PBX 9501 exhibited nearly invariant fracture strains of (approximately)1.5 percent as a function of temperature at high-strain rate. The maximum compressive strength of PBX 9501 was measured to increase from (approximately)55 MPa at 50°C to 150 MPa at -55°C. Scanning electron microscopic observations of the fracture mode of PBX 9501 deformed at high-strain revealed transgranular cleavage fracture of the HMX crystals.




A Study of the Overdriven Behaviors of PBX 9501 and PBX 9502


Book Description

The author presents the Hugoniot pressure and sound speed data in the overdriven regime for both PBX 9501 and PBX 9502. The overdriven release experiments are also given. The failure of the standard Jones-Wilkins-Lee equation of state in modeling both the Hugoniot data and the overdriven release experiments for both high explosives are identified and remedy is made by including additional terms to steepen the slope of the Hugoniot in the high pressure regime. However, an anomaly presented itself as a kink in the release wave of PBX 9502 is observed. A careful examination of the Hugoniot data indicates similar behavior. A possible explanation is suggested for this peculiarity to the phase transition of carbon in the products.




Low Amplitude Insult Project


Book Description

The Modified Steven test geometry has been used with several different target designs to investigate the mechanical loading behavior of PBX 9501 to a low velocity impact. A 2 kg. mild steel spigot projectile is launched via a new powder driven gun design, from (approximately) 20 to 105 m/s, at lightly confined, steel targets. Brief descriptions of the gun design and operation are given. The threshold velocity to reaction for various target designs, different PBX 9501 lots, and different high explosive (HE) thicknesses are reported and compared. Various diagnostics have been employed to evaluate the pressure profile and timing, and target strain behavior relative to projectile impact. The violence of reaction, as measured by both passive and active techniques, is reported relative to a steady state detonation in PBX 9501. Experimental results suggest slightly different ignition mechanisms dominate based on (HE) thickness, resulting in delayed reactions from (approximately) 0.2- to 2.8-ms after impact. Post-test analyses of the PBX 9501 are briefly summarized.




Deflagration Behavior of PBXN-109 and Composition B at High Pressures and Temperatures


Book Description

We report deflagration rate measurements on PBXN-109 (RDWAVHTPB) and Composition B (RXDTTNThrvax) at pressures from 1,500-100,000 psi (10-700 MPa). This was done with the LLNL High Pressure Strand Burner, in which embedded wires are used to record the time-of-arrival of the burn front in the cylindrical sample as a function of pressure. The propellant samples are 6.4 mm in diameter and 6.4 mm long, with burn wires inserted between samples. Burning on the cylindrical surface is inhibited with an epoxy or polyurethane layer. With this direct measurement we do not have to account for product gas equation of state or heat losses in the system, and the burn wires allow detection of irregular burning. We report deflagration results for PBXN-109 as received, and also after it has been damaged by heating. The burn behavior of pristine PBXN-109 is very regular, and exhibits a reduction in pressure exponent from 1.32 to 0.85 at pressures above 20,000 psi (135 MPa). When PBXN-109 is thermally damaged by heating to 170-180 C, the deflagration rate is increased by more than a factor of 10. This appears to be a physical effect, as the faster burning may be explained by an increase in surface area. Our results with Composition B show an apparent 2nd order pressure dependence for initial deflagration, followed by deconsolidation and onset of very rapid and erratic burning. The deconsolidation may be the result of the TNT melting as heat flows into the sample.




Deflagration Wave Profiles


Book Description

Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.