A Vision for NSF Earth Sciences 2020-2030


Book Description

The Earth system functions and connects in unexpected ways - from the microscopic interactions of bacteria and rocks to the macro-scale processes that build and erode mountains and regulate Earth's climate. Efforts to study Earth's intertwined processes are made even more pertinent and urgent by the need to understand how the Earth can continue to sustain both civilization and the planet's biodiversity. A Vision for NSF Earth Sciences 2020-2030: Earth in Time provides recommendations to help the National Science Foundation plan and support the next decade of Earth science research, focusing on research priorities, infrastructure and facilities, and partnerships. This report presents a compelling and vibrant vision of the future of Earth science research.




Division of Earth Sciences


Book Description

Web site of the National Science Foundation's Division of Earth Sciences. "The Division of Earth Sciences supports proposals for research geared toward improving the understanding of the structure, composition and evolution of the Earth and the processes that govern the formation and behavior of the Earth's materials."




Next Generation Earth Systems Science at the National Science Foundation


Book Description

The National Science Foundation (NSF) has played a key role over the past several decades in advancing understanding of Earth's systems by funding research on atmospheric, ocean, hydrologic, geologic, polar, ecosystem, social, and engineering-related processes. Today, however, those systems are being driven like never before by human technologies and activities. Our understanding has struggled to keep pace with the rapidity and magnitude of human-driven changes, their impacts on human and ecosystem sustainability and resilience, and the effectiveness of different pathways to address those challenges. Given the urgency of understanding human-driven changes, NSF will need to sustain and expand its efforts to achieve greater impact. The time is ripe to create a next-generation Earth systems science initiative that emphasizes research on complex interconnections and feedbacks between natural and social processes. This will require NSF to place an increased emphasis on research inspired by real-world problems while maintaining their strong legacy of curiosity driven research across many disciplines ? as well as enhance the participation of social, engineering, and data scientists, and strengthen efforts to include diverse perspectives in research.




Preparing the Next Generation of Earth Scientists


Book Description

Earth science, which in this context does not include oceanic, atmospheric, and space sciences, is vital to the wellbeing of the United States and many of its issues, such as water resources, are expected to grow in importance. An earth science workforce will be needed to deal with this issues and it\'s important that this workforce draw on the talents of all citizens. Thus, federal education programs can be implemented to help attract and retain students on an earth science pathway; however, tight funding means agencies need to invest in programs that actually work. As a result, the U.S. Geological Survey (USGS) Office of Science Quality and Integrity asked the National Research Council (NRC) to establish a committee to carry out a study, organized around a workshop, to address several tasks including: examining recent earth science education programs with a research or training component, both formal and informal, in these federal agencies; indentifying criteria and the results of previous federal program evaluations, and summarizing the knowledge and skills identified in recent NRC workforce reports that are needed by earth scientists in their careers. Preparing the Next Generation of Earth Scientists: An Examination of Federal Education and Training Programs presents the committee\'s finding. The investigation was completed through information provided by federal agency managers and published articles and reports. A 2-day workshop was also held to examine federal earth science education programs and efforts to leverage resources. The report includes the workshop agenda, a glossary of abbreviated terms, and more.




New Research Opportunities in the Earth Sciences


Book Description

The 2001 National Research Council (NRC) report Basic Research Opportunities in Earth Science (BROES) described how basic research in the Earth sciences serves five national imperatives: (1) discovery, use, and conservation of natural resources; (2) characterization and mitigation of natural hazards; (3) geotechnical support of commercial and infrastructure development; (4) stewardship of the environment; and (5) terrestrial surveillance for global security and national defense. This perspective is even more pressing today, and will persist into the future, with ever-growing emphasis. Today's world-with headlines dominated by issues involving fossil fuel and water resources, earthquake and tsunami disasters claiming hundreds of thousands of lives and causing hundreds of billions of dollars in damages, profound environmental changes associated with the evolving climate system, and nuclear weapons proliferation and testing-has many urgent societal issues that need to be informed by sound understanding of the Earth sciences. A national strategy to sustain basic research and training of expertise across the full spectrum of the Earth sciences is motivated by these national imperatives. New Research Opportunities in the Earth Sciences identifies new and emerging research opportunities in the Earth sciences over the next decade, including surface and deep Earth processes and interdisciplinary research with fields such as ocean and atmospheric sciences, biology, engineering, computer science, and social and behavioral sciences. The report also identifies key instrumentation and facilities needed to support these new and emerging research opportunities. The report describes opportunities for increased cooperation in these new and emerging areas between EAR and other government agency programs, industry, and international programs, and suggests new ways that EAR can help train the next generation of Earth scientists, support young investigators, and increase the participation of underrepresented groups in the field.




Understanding the Changing Planet


Book Description

From the oceans to continental heartlands, human activities have altered the physical characteristics of Earth's surface. With Earth's population projected to peak at 8 to 12 billion people by 2050 and the additional stress of climate change, it is more important than ever to understand how and where these changes are happening. Innovation in the geographical sciences has the potential to advance knowledge of place-based environmental change, sustainability, and the impacts of a rapidly changing economy and society. Understanding the Changing Planet outlines eleven strategic directions to focus research and leverage new technologies to harness the potential that the geographical sciences offer.




Annual Report - National Research Council, Division of Earth Sciences


Book Description

Issues for accompanied by appendices, consisting of reports of the division's committees. In a few cases the committee report is preliminary and the complete report is issued separately. Beginning with committee reports are issued separately.




Advancing Strategic Science


Book Description

Science is increasingly driven by data, and spatial data underpin the science directions laid out in the 2007 U.S. Geological Survey (USGS) Science Strategy. A robust framework of spatial data, metadata, tools, and a user community that is interactively connected to use spatial data in an efficient and flexible way-known as a spatial data infrastructure (SDI)-must be available for scientists and managers to find, use, and share spatial data both within and beyond the USGS. Over the last decade, the USGS has conducted breakthrough research that has overcome some of the challenges associated with implementing a large SDI. Advancing Strategic Science: A Spatial Data Infrastructure Roadmap for the U.S. Geological Survey is intended to ground those efforts by providing a practical roadmap to full implementation of an SDI to enable the USGS to conduct strategic science.




Earth Science and Applications from Space


Book Description

Natural and human-induced changes in Earth's interior, land surface, biosphere, atmosphere, and oceans affect all aspects of life. Understanding these changes requires a range of observations acquired from land-, sea-, air-, and space-based platforms. To assist NASA, NOAA, and USGS in developing these tools, the NRC was asked to carry out a "decadal strategy" survey of Earth science and applications from space that would develop the key scientific questions on which to focus Earth and environmental observations in the period 2005-2015 and beyond, and present a prioritized list of space programs, missions, and supporting activities to address these questions. This report presents a vision for the Earth science program; an analysis of the existing Earth Observing System and recommendations to help restore its capabilities; an assessment of and recommendations for new observations and missions for the next decade; an examination of and recommendations for effective application of those observations; and an analysis of how best to sustain that observation and applications system.




Basic Research Opportunities in Earth Science


Book Description

Basic Research Opportunities in Earth Science identifies areas of high-priority research within the purview of the Earth Science Division of the National Science Foundation, assesses cross-disciplinary connections, and discusses the linkages between basic research and societal needs. Opportunities in Earth science have been opened up by major improvements in techniques for reading the geological record of terrestrial change, capabilities for observing active processes in the present-day Earth, and computational technologies for realistic simulations of dynamic geosystems. This book examines six specific areas in which the opportunities for basic research are especially compelling, including integrative studies of the near-surface environment (the "Critical Zone"); geobiology; Earth and planetary materials; investigations of the continents; studies of Earth's deep interior; and planetary science. It concludes with a discussion of mechanisms for exploiting these research opportunities, including EarthScope, natural laboratories, and partnerships.