Droplet-based Microfluidic Chip Design for High Throughput Screening Applications


Book Description

Droplet-based microfluidics has been considered as a prospective tool for high throughput screening analysis, which is highly demanded in a wide range of areas including but not limited to life science research, drug discovery, material synthesis and environmental monitoring. Low sample consumption, reduced reaction time, high throughput manipulation, fast mixing, and prevention of cross contamination at channel walls are just some of the benefits of droplet-based microfluidics. Although extensive research efforts have been reported in the study of droplet-based microfluidics over the past decades, it has yet to be widely commercialized. One of the challenges that limit droplet microfluidic chips from being commercialized is the difficulty in integrating multiple functions robustly without increasing the device footprint. Major functionalities of interest include generating droplets with controlled volume and frequency, and precisely controlling and manipulating each individual droplet such as sorting, detecting, merging, splitting, pairing, mixing, trapping, releasing, long term and short term storing, etc. Since many of these functionalities rely on the accuracy of droplet generation which is the first step, it is crucial to investigate the droplet formation process and understand how to design microfluidic structures to manipulate each individual droplet effectively. To this end, this thesis started with a fundamental study of droplet generation in a flow focusing geometry based on extensive experimental data, from which a physical model was developed to describe droplet formation processes, then move on to study droplet generation in a geometry with two junctions in series, with the goal of improving single encapsulation (one particle per droplet) efficiency. Later, droplet merging towards whole genome amplification and drug screening applications was investigated, and finally a microfluidic chip integrated with multiple functionalities was developed, and its robustness was validated. The first project studied the fundamental principles of liquid-liquid droplet generation in a flow focusing device. This work presents a 3D physical model with less fitting parameters than existing ones. The model describes droplet formation process in flow focusing devices operating in the squeezing regime, where droplet size is usually larger than the channel width, and was developed based on a systematic and extensive experimental study. In particular, it incorporates an accurate geometric description of the 3D droplet shape during the formation process, an estimation of the time period for the formation cycle based on the conservation of mass, and a semi-analytical model predicting the pressure drop over the 3D corner gutter between the droplet curvature and channel walls, which allows droplet size, spacing and formation frequency to be determined accurately. The model takes into account change in channel geometry (height to width ratio), viscosity contrast, flow rate ratio and capillary number with a wide variety. In the second project, liquid-liquid droplet generation in a flow focusing device with two junctions in series was investigated using experimental approach. Extra emphasis was placed on the device's ability to encapsulate single cell and particle. . This study employs glycerol solutions with different concentrations as the dispersed phase, which tends to form stratified flow at the first junction due to viscosity contrast. The stratified flow proceeds to form droplets in oil stream at the second junction. To obtain a comprehensive understanding of the droplet formation dynamics involving stratified flow, five different scenarios were considered. These include a single stream of 10%glycerol aqueous solution, a single stream of 80%glycerol aqueous solution, as well as the simultaneous flow of multiple streams of the above mentioned solution. Droplet size and formation period for these cases were compared and analyzed considering the same geometric and flow conditions. It is found that stratified flow structure strongly influences droplet formation dynamics such as droplet size and formation frequency and the scenario with 80%glyc surrounded by 10%glyc in the first junction generates the largest droplet size. Each structure finds its own applications. For the purpose of single encapsulation, the scenario with 80%glyc surrounded by 10%glyc in the first junction is most suitable because the high viscosity of 80%glyc allows particles to be focused into a thin stream and spaced out before entering droplets. On the other hand, the scenario with two fluids side by side in the first junction generates droplets with high monodispersity for a larger range of flow ratios, which is useful for high throughput reactions involving different reagents. After understanding the fundamentals of the droplet generation process, several designs for practical use were proposed to generate or manipulate droplets. These designs include: i) a flow focusing device that improve droplet size uniformity through changing junction angle; ii) a system for droplet generation on demand, which is essential to controlling droplets of specific reagents; iii) a geometry for generating droplet pairs with uniform droplet sizes and controlled droplet spacing , and to study the interaction between two nearby droplets; iv) a simple droplet merging chamber for controlled reagent volume; and v) a droplet trapping and releasing on demand system for drug screening. The final part of this thesis presents a complex microfluidic system that integrates multiple functionalities, including droplet generation, pairing, trapping, merging, mixing, and releasing. The criterion of this design was analyzed and verified by experiments. This design does not require any synchronization of droplet frequency, spacing or velocity, which makes the microfluidic chip work robustly, and is controlled entirely by liquid flow eliminating the needs for electrodes, magnets or any other moving parts. This design can be applied to many chemical or biological reactions, such as drug screening, chemical synthesis, and cell culture, etc.




Droplet Microfluidics


Book Description

Droplet microfluidics offers tremendous potential as an enabling technology for high-throughput screening. It promises to yield novel techniques for personalised medicine, drug discovery, disease diagnosis, establishing chemical libraries, and the discovery of new materials. Despite the enormous potential to contribute to a broad range of applications, the expected adoption has not yet been seen, partly due to the interdisciplinary nature and the fact that, up until now, information has been scattered across the literature. This book goes a long way to addressing these issues. Edited by two leaders, this book has drawn together expertise from around the globe to form a unified, cohesive resource for the droplet microfluidics community. Starting with the basic theory of droplet microfluidics before introducing its use as a tool, the reader will be treated to chapters on important techniques, including robust passive and active droplet manipulations and applications such as single cell analysis, which is key for drug discovery. This book is a go-to resource for the community yearning to adopt and promote droplet microfluidics into different applications and will interest researchers and practitioners working across chemistry, biology, physics, materials science, micro- and nano-technology, and engineering.




Microfluidics


Book Description

What Is Microfluidics Microfluidics refers to the behavior, precise control, and manipulation of fluids that are geometrically constrained to a small scale at which surface forces dominate volumetric forces. It is a multidisciplinary field that involves engineering, physics, chemistry, biochemistry, nanotechnology, and biotechnology. It has practical applications in the design of systems that process low volumes of fluids to achieve multiplexing, automation, and high-throughput screening. Microfluidics emerged in the beginning of the 1980s and is used in the development of inkjet printheads, DNA chips, lab-on-a-chip technology, micro-propulsion, and micro-thermal technologies. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Microfluidics Chapter 2: Droplet-based microfluidics Chapter 3: Digital microfluidics Chapter 4: Paper-based microfluidics Chapter 5: Microfluidic cell culture Chapter 6: Electroosmotic pump Chapter 7: Materials science (II) Answering the public top questions about microfluidics. (III) Real world examples for the usage of microfluidics in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of microfluidics' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of microfluidics.




Microdroplet Technology


Book Description

Microdroplet technology has recently emerged to provide new and diverse applications via microfluidic functionality, especially in various areas of biology and chemistry. This book, then, gives an overview of the principle components and wide-ranging applications for state-of-the-art of droplet-based microfluidics. Chapter authors are internationally-leading researchers from chemistry, biology, physics and engineering that present various key aspects of micrdroplet technology -- fundamental flow physics, methodology and components for flow control, applications in biology and chemistry, and a discussion of future perspectives. This book acts as a reference for academics, post-graduate students, and researcher wishing to deepen their understand of microfluidics and introduce optimal design and operation of new droplet-based microfluidic devices for more comprehensive analyte assessments.




Micro/Nanofluidics and Lab-on-Chip Based Emerging Technologies for Biomedical and Translational Research Applications - Part B


Book Description

Micro/Nanofluidics and Lab-on-Chip Based Emerging Technologies for Biomedical and Translational Research Applications - Part B, Volume 187 represents the collation of chapters written by eminent scientists worldwide. Chapters in this new release include Design and fabrication of microfluidics devices for molecular biology applications, Micro/Nanofluidics devices for drug delivery, From organ-on-chip to body-on-chip: the next generation of microfluidics platforms for in vitro drug toxicity testing, Micro/Nanofluidics for high throughput drug screening, Design, fabrication and assembly of lab-on-a-chip and its uses, Advances in microfluidic 3D cell culture for pre-clinical drug development, Tissue and organ culture on lab-on-a chip for biomedical applications, and much more. Offers a basic understanding of the state-of-the-art design and fabrication of microfluidics/ nanofluidics and lab on chip Explains how to develop microfluidics/nanofluidic for advanced application such as healthcare, high throughout drug screening, 3D cell culture and organ-on-chip Discusses the emerging demands and research of micro/nanofluidic based devices in biomedical and translational research applications




Microfluidic Devices for Biomedical Applications


Book Description

Microfluidic Devices for Biomedical Applications, Second Edition provides updated coverage on the fundamentals of microfluidics, while also exploring a wide range of medical applications. Chapters review materials and methods, microfluidic actuation mechanisms, recent research on droplet microfluidics, applications in drug discovery and controlled-delivery, including micro needles, consider applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds, and cover the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis. This book is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries. Discusses the fundamentals of microfluidics or lab-on-a-chip (LOC) and explores a wide range of medical applications Considers materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies Details applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and its role in developing tissue scaffolds, and stem cell engineering




Droplet and Digital Microfluidics


Book Description

Droplet and Digital Microfluidics: Ideation to Implementation is a detailed introduction to the dynamics of droplet and digital microfluidics, also featuring coverage of new methods and applications. The explosion of applications of microelectromechanical systems (MEMS) in recent years has driven demand for expertise and innovation in fluid flow in the microchannels they contain. In this book, detailed descriptions of methods for biological and chemical applications of microfluidics are provided, along with supporting foundational knowledge. In addition, the principles of droplet and digital microfluidics are explained, along with their different applications and governing physics. New additions to the technological knowledgebase that enable advances in droplet and digital microfluidics include machine learning and exciting future avenues for research. Provides step-by-step fabrication, testing, and characterization instructions in each chapter to support implementation Includes explanations of applications and methods in biological and chemical settings Describes the path to automation of digital and droplet microfluidic platforms




Functional Metagenomics: Tools and Applications


Book Description

In this book, the latest tools available for functional metagenomics research are described.This research enables scientists to directly access the genomes from diverse microbial genomes at one time and study these “metagenomes”. Using the modern tools of genome sequencing and cloning, researchers have now been able to harness this astounding metagenomic diversity to understand and exploit the diverse functions of microorganisms. Leading scientists from around the world demonstrate how these approaches have been applied in many different settings, including aquatic and terrestrial habitats, microbiomes, and many more environments. This is a highly informative and carefully presented book, providing microbiologists with a summary of the latest functional metagenomics literature on all specific habitats.




Droplet Microfluidics


Book Description

Droplet microfluidics has dramatically developed in the past decade and has been established as a microfluidic technology that can translate into commercial products. Its rapid development and adoption have relied not only on an efficient stabilizing system (oil and surfactant), but also on a library of modules that can manipulate droplets at a high-throughput. Droplet microfluidics is a vibrant field that keeps evolving, with advances that span technology development and applications. Recent examples include innovative methods to generate droplets, to perform single-cell encapsulation, magnetic extraction, or sorting at an even higher throughput. The trend consists of improving parameters such as robustness, throughput, or ease of use. These developments rely on a firm understanding of the physics and chemistry involved in hydrodynamic flow at a small scale. Finally, droplet microfluidics has played a pivotal role in biological applications, such as single-cell genomics or high-throughput microbial screening, and chemical applications. This Special Issue will showcase all aspects of the exciting field of droplet microfluidics, including, but not limited to, technology development, applications, and open-source systems.




Miniaturization of High Throughput Screening in Microfluidics Based on Plugs and SlipChip


Book Description

This dissertation describes the development of microfluidic systems based on plugs and SlipChip, for applications in high throughput screening. The advancement of high throughput screening and assays benefits from miniaturization of fluid handling. Robotic systems automate the process of pipette-dispensing solutions into well plates and run on a much smaller scale, but these systems are expensive and inherit some intrinsic problems from dispensing solutions into open wells. Microfluidics handles small amounts (nanoliters to femtoliters) of fluids in enclosed chambers or channels; consequently, it overcomes the intrinsic problems in robotic systems. Among microfluidics-based systems, valve-based microfluidics, compact-disc (CD)-based microfluidics, and droplet (plug)-based microfluidics are applicable to high throughput screening and assays. Valve-based and CD-based microfluidics performs thousands of nanoliter experiments in parallel, but the devices are complicated to manufacture and require expensive instrumentation to operate. Droplet (plug)-based microfluidics drives fluids by pumps and droplets form spontaneously, therefore it is less complicated. This thesis will discuss the development and improvement of methods using plug-based microfluidics to perform high throughput screening. It will also describe the development of the SlipChip, a new technology that accurately manipulates nanoliter fluids without any instruments.