Sedimentary Processes and Environmental Signals from Paired High Arctic Lakes


Book Description

Suspended sediment delivery dynamics in two watersheds at Cape Bounty, Melville Island, Nunavut, Canada were studied to characterize the hydroclimate conditions in which laminated sediments formed. Process work over three years determined snow-water equivalence was the primary factor that controlled sediment yield in both catchments. Cool springs (2003, 2004) enhanced runoff potential and intensity because channelized meltwater was delayed as it tunneled through the snowpack and reached the river channel (sediment supply) within 1-2 days. In warm springs (2005), meltwater channelized on the snowpack and did not immediately reach the river bed (7-10 days). Sediment transport was reduced because flow competence was lower and sediment supplies limited. Sediment deposition in the West Lake depended on surface runoff intensity. Short-lived, intense episodes of turbid inflow generated underflow activity which delivered the majority of seasonal sediment. In 2005, runoff was less intense and few underflows were detected compared to the cooler, underflow dominated 2004 runoff season. As well, grain-size analysis of trapped sediment indicated that deposition rates and maximum grain-size were decoupled, indicative of varied sediment supplies and delivery within the fluvial system. These decoupled conditions have important implications for paleohydrological interpretations from downstream sedimentary records. Two similar 600-year varve records were constructed from the lakes at Cape Bounty. Although these series were highly correlated throughout, time-dependent correlation analysis identified divergence in the early 19th century. Because the varve records were from adjacent watersheds and subject to the same hydroclimatic conditions, the divergence suggests watershed-level changes, such as increased local active layer detachments. The varve record from West Lake was highly correlated with lagged autumn snowfall and spring temperature. Similar relationships between these variables and East Lake were not as strong or significant. Long-term climatic interpretations should be carefully assessed. A single record from either of these lakes might lead to autumn snowfall and/or spring-melt intensity reconstructions, given the process work and weather record correlations. The recent divergence reveals potential changes likely to occur as warming increases variability within the Arctic System. Multidisciplinary monitoring and observations should continue in order to quantify future variability and evaluate the impact on these systems.













The Under-ice Dynamics of High Arctic Lakes


Book Description

Even the world’s most northern ecosystems have been affected by climate warming and High Arctic lakes are no exception. Ellesmere Island is at the northernmost limit of Canada, and regime shifts have already been documented in its lakes towards taxa associated with longer growing seasons. It has been projected that the northern coast of Ellesmere Island is within a region that will experience the greatest annual warming in the Arctic over the next 80 years, and so understanding the functioning of its sensitive coastal lakes is critical before further changes occur. I studied a series of four lakes in Stuckberry Valley (82o54 N, 66o58 W) to give insight into their under-ice phytoplankton dynamics. My objectives were 1) identify and quantify the photosynthetic communities found in the Stuckberry Valley lakes, 2) determine the physicochemical variables that exerted the strongest control over within- and between-lake community variation, and 3) expand the understanding of under-ice High Arctic freshwater ecosystems and their function. Light intensities and DO concentrations exerted primary control over the distribution and abundance of photosynthetic organisms, in addition to important roles played by specific conductivity and nitrogen. These variables clearly distinguished two deep, oxic lakes from two shallow, anoxic lakes. Differences in photosynthetic community types between lakes and depths was strongly linked to DO concentrations: the red pigment algal line dominated in oxic waters, while purple sulfur bacteria (PSB) were found in anoxic zones. Pigments indicated that dinoflagellates, cryptophytes, and haptophytes were abundant throughout all four lakes, with lower concentrations of chrysophyte and chlorophyte pigments. My thesis represents one of the very few studies of High Arctic under-ice photosynthetic communities, and it significantly advances our understanding of ecological processes in this highly sensitive region.




Limnology and Paleolimnology of Adjacent High Arctic Lakes with an Emphasis on Terrestrial-aquatic Linkages


Book Description

Our knowledge of how Arctic freshwater ecosystems will respond to continued climate change and variability is fundamentally limited by logistical difficulties of such remote research, resulting in relatively sparse long-term baseline data on these systems. This research applies a unique paired-watershed approach (i.e., two similar, adjacent lakes and catchments) to help address these limitations, which provided an opportunity to identify how broad-scale factors are filtered or modified by site-specific characteristics. My first main objective was to document the seasonal hydrochemical variability of runoff and influences on lake chemistry. Both lakes appear to be relatively insensitive to seasonal hydroclimatic variability, largely because periods of high discharge were also characterized by lower concentrations of dissolved and particulate matter, but also because of the relatively long lake water turnover time that suggests the effects of climatic and environmental changes would be felt later in these systems than in lakes and ponds with smaller lake volumes. My second objective was to investigate spatial and temporal trends in the lake diatom communities in order to refine subsequent paleoenvironmental reconstructions. A critical aspect of this objective was testing how faithfully the whole lake diatom community was represented in deep lake surface sediments where sediment cores are routinely collected. Most differences between the two lakes were largely accounted for with micro-environmental conditions associated with the specific sampling location. Also, both lakes exhibited a degree of disconnection between littoral benthic and profundal zones that manifested as an under-representation of the benthic community in deep lake surface sediments, with implications for paleoenvironmental interpretations. Finally, I present a multi-proxy record of environmental conditions in adjacent lakes spanning the period from pre-industrial times. Biogeochemical records reflected major changes in lake primary productivity and terrestrial organic matter accumulation beginning prior to 1950 in both lakes, pointing to profound environmental changes that culminated with the establishment of an appreciable diatom community in both lakes in the 1980s. Differences in the timing of changes between the two lakes point to differing threshold capacities to external forcings, and suggest that East Lake's response to post-industrial climate change is advanced compared to West Lake.







Surface Temperature Reconstructions for the Last 2,000 Years


Book Description

In response to a request from Congress, Surface Temperature Reconstructions for the Last 2,000 Years assesses the state of scientific efforts to reconstruct surface temperature records for Earth during approximately the last 2,000 years and the implications of these efforts for our understanding of global climate change. Because widespread, reliable temperature records are available only for the last 150 years, scientists estimate temperatures in the more distant past by analyzing "proxy evidence," which includes tree rings, corals, ocean and lake sediments, cave deposits, ice cores, boreholes, and glaciers. Starting in the late 1990s, scientists began using sophisticated methods to combine proxy evidence from many different locations in an effort to estimate surface temperature changes during the last few hundred to few thousand years. This book is an important resource in helping to understand the intricacies of global climate change.




Paleolimnology


Book Description

This text, written by a leading researcher in the field, describes the origin and formation of lakes in order to give context to the question of how lacustrine deposits form. It explains the process of sedimentation in lakes and the chemistry of those deposits and describes how the age of lake deposits are determined. Additionally, this book shows how different groups of fossils are used in interpreting the paleontological record of lakes. In order to illustrate the more synthetic approaches to interpreting the history of lakes, the author also discusses such special topics as lake-level history, lake evolution, and the impact of environmental change on lakes.