Experimental and Numerical Investigation on Fouling Parameters in a Small-Scale Rotating Unit


Book Description

Fouling, a problem since the first heat exchanger was created, has been the focus of various studies since the 1970s. In particular, crude oil fouling is a costly and problematic type of heat exchanger fouling that occurs in the preheat train to the atmospheric distillation column in petroleum refineries. Previous experiments have been designed to determine the causes of fouling using less than one gallon of crude oil and accumulating test results within a day. These experiments will be the basis of the Rotating Fouling Unit (RFU) at Heat Transfer Research Inc. (HTRI). The RFU focuses on better controlling the shear stress and heat transfer distribution along the surface of the heated test section by analyzing Taylor-Couette flow experiments and using them as a basis to better predict the flow across the heated surface of the test section in the RFU. Additionally, the equations for Taylor-Couette flow are used to verify the 2D flow simulations of the RFU to ensure the accuracy of the results. The design of the RFU incorporates data acquisition with a variety of measurements that will facilitate automatic and accurate data collection, so the results can be easily compared to previous fouling experiments. The RFU will act as a supplement to the High Temperature Fouling Unit (HTFU) at HTRI, and provide data comparable to that of the HTFU in order to better understand crude oil fouling. Computer simulations can accurately predict the shear stress and heat transfer coefficient along the surface of the test probe and help verify the improvements made to the original batch stirred cell designs. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/150955




Heat Transfer Enhancement with Nanofluids


Book Description

Nanofluids are gaining the attention of scientists and researchers around the world. This new category of heat transfer medium improves the thermal conductivity of fluid by suspending small solid particles within it and offers the possibility of increased heat transfer in a variety of applications. Bringing together expert contributions from










Sustainable Development of Water and Environment


Book Description

This book addresses the improvement and dissemination of knowledge on methods, policies and technologies for increasing the sustainability of development by de-coupling growth from natural resources and replacing them with knowledge-based economy, taking into account its economic, environmental and social pillars, as well as methods for assessing and measuring sustainability of development, regarding water and environment. This book gathers scholar and experts in related fields. All attendees from a vast range of companies, universities and government institutions acquire advanced technical knowledge and are introduced to new fields through discussions that focus on their own specialties as well as a variety of interdisciplinary areas. The authors hope most of scholars can find what they really need in this book.




Chemical Engineering Design


Book Description

Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors










Crude Oil Fouling


Book Description

With production from unconventional rigs continuing to escalate and refineries grappling with the challenges of shale and heavier oil feedstocks, petroleum engineers and refinery managers must ensure that equipment used with today's crude oil is protected from fouling deposits Crude Oil Fouling addresses this overarching challenge for the petroleum community with clear explanations on what causes fouling, current models and new approaches to evaluate and study the formation of deposits, and how today's models could be applied from lab experiment to onsite field usability for not just the refinery, but for the rig, platform, or pipeline. Crude Oil Fouling is a must-have reference for every petroleum engineer's library that gives the basic framework needed to analyze, model, and integrate the best fouling strategies and operations for crude oil systems. - Defines the most critical variables and events that cause fouling - Explains the consequences of fouling and its impact on operations, safety, and economics - Provides the technical models available to better predict and eliminate the potential for fouling in any crude system