Experimental Evaluation of Indoor Air Cleaning Technologies and Modeling of UV-PCO (photocatalytic Oxidation) Air Cleaners Under Multiple VOCs Conditions


Book Description

The objectives of this study were to: (1) develop much needed test methods and datasets for determining the performance of various air cleaning technologies, and (2) improve the understanding and develop a simulation model for the performance prediction of ultraviolet photocatalytic oxidation (UV-PCO) devices under multiple volatile organic compounds (VOCs) conditions.







Volatile Organic Compounds By-products Generation in Photocatalytic Oxidation Reactor


Book Description

The presence of volatile organic compounds (VOCs) in indoor air is inevitable. Their adverse effect on human health has encouraged researchers to develop various technologies for air pollution remediation. Photocatalytic oxidation (PCO) has been regarded as a promising and emerging technique for air purification and extensively investigated in the last two decades to characterize and improve the effectiveness and performance of this technology. In addition, the development of appropriate models can enhance the understanding of reactor performance and the evaluation of intrinsic kinetic parameters that enable the scale-up or re-design of more efficient large-scale photocatalytic reactors. This research works on mathematical modeling of gas phase photocatalytic reactors and analyses different key factors that can enhance pollutants decomposition. At the first step, a one-dimensional time-dependent mathematical model for continuous flow UV-PCO reactor has been developed. In this model, transfer of pollutants by advection and dispersion in bulk phase incorporates with the reaction rate based on the extended Langmuir Hinshelwood model in the catalyst phase. CFD modeling was also used to determine the flow distribution in the reactor at various airflow rates. Moreover, the light intensity distribution on the photocatalyst surface was simulated using the linear source spherical emission model. A dimensionless form of the model was then proposed to generalize the result for any scale. The proposed model was validated first by comparing with predictions of other models (inter-model comparison) and then by experimental data from two different scales (pilot and bench) of UV-PCO reactors. Furthermore, a sensitivity analysis using dimensionless parameters was conducted to find the controlling step in the PCO process. To validate the model, acetone, MEK, and toluene were tested in the UV-PCO reactor with a commercial PCO filter (TiO2 coated on silica fiber felts) at various operating conditions, such as concentration, relative humidity, irradiance and air velocity. The main issue for applying PCO technology in the indoor environment is the generation of hazardous by-products. The effect of by-products formation was usually ignored in former modeling studies. The next effort was to improve the model and build a comprehensive one to consider by-products generation in the UV-PCO reactor. To achieve this goal, a possible reaction pathway for degradation of each challenge compound was proposed based on identified by-products in analytical methods (GC-MS and HPLC). Different possible reaction rate scenarios were evaluated to find the best expression fitted to experimental data at the steady-state condition. The obtained reaction coefficients were then used to validate the model under various operating conditions. Finally, the Health Risk Index was used to investigate the implications of generated by-products on human health under varying operating conditions. The results indicated that the proposed model has a great potential to simulate the behavior of UV-PCO reactor in a real application.




Parametric Evaluation of an Innovative Ultra-Violet PhotocatalyticOxidation (UVPCO) Air Cleaning Technology for Indoor Applications


Book Description

An innovative Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaning technology employing a semitransparent catalyst coated on a semitransparent polymer substrate was evaluated to determine its effectiveness for treating mixtures of volatile organic compounds (VOCs) representative of indoor environments at low, indoor-relevant concentration levels. The experimental UVPCO contained four 30 by 30-cm honeycomb monoliths irradiated with nine UVA lamps arranged in three banks. A parametric evaluation of the effects of monolith thickness, air flow rate through the device, UV power, and reactant concentrations in inlet air was conducted for the purpose of suggesting design improvements. The UVPCO was challenged with three mixtures of VOCs. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. The third mixture contained formaldehyde and acetaldehyde. Steady state concentrations were produced in a classroom laboratory or a 20-m{sup 3} chamber. Air was drawn through the UVPCO, and single-pass conversion efficiencies were measured from replicate samples collected upstream and downstream of the reactor. Thirteen experiments were conducted in total. In this UVPCO employing a semitransparent monolith design, an increase in monolith thickness is expected to result in general increases in both reaction efficiencies and absolute reaction rates for VOCs oxidized by photocatalysis. The thickness of individual monolith panels was varied between 1.2 and 5 cm (5 to 20 cm total thickness) in experiments with the office mixture. VOC reaction efficiencies and rates increased with monolith thickness. However, the analysis of the relationship was confounded by high reaction efficiencies in all configurations for a number of compounds. These reaction efficiencies approached or exceeded 90% for alcohols, glycol ethers, and other individual compounds including d-limonene, 1,2,4-trimethylbenzene, and decamethylcyclopentasiloxane. This result implies a reaction efficiency of about 30% per irradiated monolith face, which is in agreement with the maximum efficiency for the system predicted with a simulation model. In these and other experiments, the performance of the system for highly reactive VOCs appeared to be limited by mass transport of reactants to the catalyst surface rather than by photocatalytic activity. Increasing the air flow rate through the UVPCO device decreases the residence time of the air in the monoliths and improves mass transfer to the catalyst surface. The effect of gas velocity was examined in four pairs of experiments in which the air flow rate was varied from approximately 175 m{sup 3}/h to either 300 or 600 m{sup 3}/h. Increased gas velocity caused a decrease in reaction efficiency for nearly all reactive VOCs. For all of the more reactive VOCs, the decrease in performance was less, and often substantially less, than predicted based solely on residence time, again likely due to mass transfer limitations at the low flow rate. The results demonstrate that the UVPCO is capable of achieving high conversion efficiencies for reactive VOCs at air flow rates above the base experimental rate of 175 m{sup 3}/h. The effect of UV power was examined in a series of experiments with the building product mixture in which the number of lamps was varied between nine and three. For the most reactive VOCs in the mixture, the effects of UV power were surprisingly small. Thus, even with only one lamp in each section, there appears to be sufficient photocatalytic activity to decompose most of the mass of reactive VOCs that reach the catalyst surface. For some less reactive VOCs, the trend of decreasing efficiency with decreasing UV intensity was in general agreement with simulation model predictions.




Evaluation of Ultra-Violet Photocatalytic Oxidation for Indoor AirApplications


Book Description

Acceptable indoor air quality in office buildings may be achieved with less energy by combining effective air cleaning systems for volatile organic compounds (VOCs) with particle filtration then by relying solely on ventilation. For such applications, ultraviolet photocatalytic oxidation (UVPCO) systems are being developed for VOC destruction. An experimental evaluation of a UVPCO system is reported. The evaluation was unique in that it employed complex mixtures of VOCs commonly found in office buildings at realistically low concentrations. VOC conversion efficiencies varied over a broad range, usually exceeded 20%, and were as high as {approx}80%. Conversion efficiency generally diminished with increased air flow rate. Significant amounts of formaldehyde and acetaldehyde were produced due to incomplete mineralization. The results indicate that formaldehyde and acetaldehyde production rates may need to be reduced before such UVPCO systems can be deployed safely in occupied buildings.




Handbook of Indoor Air Quality


Book Description

People live in indoor environment about 90% of lifetime and an adult inhales about 15 kg air each day, over 75% of the human body’s daily mass intake (air, food, water). Therefore, indoor air quality (IAQ) is very important to human health. This book provides the basic knowledge of IAQ and highlights the research achievements in the past two decades. It covers the following 12 sections: introduction, indoor air chemicals, indoor air particles, measurement and evaluation, source/sink characteristics, indoor chemistry, human exposure to indoor pollutants, health effects and health risk assessment, IAQ and cognitive performance, standards and guidelines, IAQ control, and air quality in various indoor environments. It provides a combination of an introduction to various aspects on IAQ studies, the current state-of-knowledge, various advances and the perspective of IAQ studies. It will be very helpful for the researchers and technicians in the IAQ and the related fields. It is also useful for experts in other fields and general readers who want to obtain a basic understanding of and research advances in the field of IAQ. A group of experts in IAQ research have been recruited to write the chapters. Their research interests and experience cover the scope of the book. In addition, some experienced experts in IAQ field have been invited as advisors or reviewers to give their comments, suggestions and revisions on the handbook framework and the chapter details. Their contribution guarantees the quality of the book. We are very grateful to them. Last but not least, we express our heartfelt thanks to Prof. Spengler, Harvard University, for writing the foreword of the current Handbook of Indoor Air Quality both as a pioneer scientist who contributed greatly to indoor air science and as an Editor-in-chief of Handbook of Indoor Air Quality 2001, 1st ed. New York: McGraw-Hill. In addition to hard copies, the book is also published online and will be updated by the authors as needed to keep it aligned with current knowledge. These salient features can make the handbook fresh with the research development.




Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) ForIndoor Air Applications


Book Description

Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide and 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the most reactive chemical classes with conversion efficiencies often near or above 70% at the low flow rate and near 40% at the high flow rate. Ketones and terpene hydrocarbons were somewhat less reactive. The relative VOC conversion rates are generally favorable for treatment of indoor air since many contemporary products used in buildings employ oxygenated solvents. A commercial UVPCO device likely would be installed in the supply air stream of a building and operated to treat both outdoor and recirculated air. Assuming a recirculation rate comparable to three times the normal outdoor air supply rate, simple mass-balance modeling suggests that a device with similar characteristics to the study unit has sufficient conversion efficiencies for most VOCs to compensate for a 50% reduction in outdoor air supply without substantially impacting indoor VOC concentrations. Formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid were produced in these experiments as reaction byproducts. No other significant byproducts were observed. A coupled steady-state mass balance model is presented and applied to VOC data from a study of a single office building. For the operating assumptions described above, the model estimated a three-fold increase in indoor formaldehyde and acetaldehyde concentrations. The outcome of this limited assessment suggests that evaluation of the potential effects of the operation of a UVPCO device on indoor concentrations of these contaminants is warranted. Other suggested studies include determining VOC conversion efficiencies in actual buildings and evaluating changes in VOC conversion efficiency as monoliths age with long-term operation.










Evaluation of a Combined Ultraviolet Photocatalytic Oxidation(UVPCO)


Book Description

We previously reported that gas-phase byproducts of incomplete oxidation were generated when a prototype ultraviolet photocatalytic oxidation (UVPCO) air cleaner was operated in the laboratory with indoor-relevant mixtures of VOCs at realistic concentrations. Under these conditions, there was net production of formaldehyde and acetaldehyde, two important indoor air toxicants. Here, we further explore the issue of byproduct generation. Using the same UVPCO air cleaner, we conducted experiments to identify common VOCs that lead to the production of formaldehyde and acetaldehyde and to quantify their production rates. We sought to reduce the production of formaldehyde and acetaldehyde to acceptable levels by employing different chemisorbent scrubbers downstream of the UVPCO device. Additionally, we made preliminary measurements to estimate the capacity and expected lifetime of the chemisorbent media. For most experiments, the system was operated at 680-780 m3/h (400-460 cfm). A set of experiments was conducted with common VOCs introduced into the UVPCO device individually and in mixture. Compound conversion efficiencies and the production of formaldehyde and acetaldehyde were determined by comparison of compound concentrations upstream and downstream of the reactor. There was general agreement between compound conversions efficiencies determined individually and in the mixture. This suggests that competition among compounds for active sites on the photocatalyst surface will not limit the performance of the UVPCO device when the total VOC concentration is low. A possible exception was the very volatile alcohols, for which there were some indications of competitive adsorption. The results also showed that formaldehyde was produced from many commonly encountered VOCs, while acetaldehyde was generated by specific VOCs, particularly ethanol. The implication is that formaldehyde concentrations are likely to increase when an effective UVPCO air cleaner is used in buildings containing typical VOC sources. The magnitude of the expected increase will depend upon a number of interrelated factors. Series of experiments were conducted to determine if the oxidizer, sodium permanganate (NaMnO4·H2O), has sufficient reaction rates and capacity to counteract formaldehyde and acetaldehyde production and enable a 50 % reduction in building ventilation rate without net increases in indoor aldehyde concentrations. A commercially produced filter element and two laboratory-fabricated media beds containing NaMnO4·H2O chemisorbent media were evaluated. The effectiveness of a device for removal of formaldehyde, acetaldehyde and other VOCs was determined by measurement of concentrations immediately upstream and downstream of the device. In some experiments, conversion efficiencies and byproduct generation by the UVPCO device also were determined. Six experiments were conducted with the commercial filter element installed downstream of the UVPCO reactor. Eleven experiments were conducted with a single panel media bed (30 cm by 61 cm by 2.5 cm deep) installed downstream of the UVPCO reactor; in these, the effects of temperature and air residence time on conversion efficiency were examined. Two experiments were conducted with a four-panel, folded, media bed (approximately four times the size of the single panel bed) installed downstream of the reactor. Because the commercial unit contained activated carbon as an additional component, it was effective at removing lower volatility compounds that typically have low oxidation rates in the UVPCO reactor. The filter element also met the minimum efficiency objective for formaldehyde. However, the removal of acetaldehyde was less than required. The air residence time in the single panel bed was not optimized as the removal efficiencies for both formaldehyde and acetaldehyde were strongly inversely related to the air flow rate through the device. In addition, the acetaldehyde removal efficiency decreased to less than 10% with extended use of the device. The folded bed was considerably more effective; formaldehyde was removed with greater than 90% efficiency, and acetaldehyde was removed at about 70% efficiency. With the combined UVPCO/chemisorbent system, the net removal efficiencies for formaldehyde and acetaldehyde were 90% and 40%, respectively. In summary, the use of a multi-panel, folded scrubber filled with NaMnO4·H2O chemisorbent media downstream of the prototype UVPCO air cleaner effectively counteracted the generation of formaldehyde and acetaldehyde due to incomplete oxidation of VOCs in the UVPCO reactor. Thus, this combined UVPCO air cleaner and chemisorbent system appears to have sufficient VOC removal efficiency to enable a 50 % reduction in ventilation rate without increasing indoor aldehyde concentrations.