Finite Packing and Covering


Book Description

This book provides an in-depth discussion of the theory of finite packings and coverings by convex bodies.




Finite Packing and Covering


Book Description







Packing and Covering


Book Description




Packing and Covering


Book Description

Professor Rogers has written this economical and logical exposition of the theory of packing and covering at a time when the simplest general results are known and future progress seems likely to depend on detailed and complicated technical developments. The book treats mainly problems in n-dimensional space, where n is larger than 3. The approach is quantative and many estimates for packing and covering densities are obtained. The introduction gives a historical outline of the subject, stating results without proof, and the succeeding chapters contain a systematic account of the general results and their derivation. Some of the results have immediate applications in the theory of numbers, in analysis and in other branches of mathematics, while the quantative approach may well prove to be of increasing importance for further developments.




Handbook of Convex Geometry


Book Description

Handbook of Convex Geometry, Volume B offers a survey of convex geometry and its many ramifications and connections with other fields of mathematics, including convexity, lattices, crystallography, and convex functions. The selection first offers information on the geometry of numbers, lattice points, and packing and covering with convex sets. Discussions focus on packing in non-Euclidean spaces, problems in the Euclidean plane, general convex bodies, computational complexity of lattice point problem, centrally symmetric convex bodies, reduction theory, and lattices and the space of lattices. The text then examines finite packing and covering and tilings, including plane tilings, monohedral tilings, bin packing, and sausage problems. The manuscript takes a look at valuations and dissections, geometric crystallography, convexity and differential geometry, and convex functions. Topics include differentiability, inequalities, uniqueness theorems for convex hypersurfaces, mixed discriminants and mixed volumes, differential geometric characterization of convexity, reduction of quadratic forms, and finite groups of symmetry operations. The selection is a dependable source of data for mathematicians and researchers interested in convex geometry.




Lagerungen


Book Description

The publication of the first edition of Lagerungen in der Ebene, auf der Kugel und im Raum in 1953 marked the birth of discrete geometry. Since then, the book has had a profound and lasting influence on the development of the field. It included many open problems and conjectures, often accompanied by suggestions for their resolution. A good number of new results were surveyed by László Fejes Tóth in his Notes to the 2nd edition. The present version of Lagerungen makes this classic monograph available in English for the first time, with updated Notes, completed by extensive surveys of the state of the art. More precisely, this book consists of: a corrected English translation of the original Lagerungen, the revised and updated Notes on the original text, eight self-contained chapters surveying additional topics in detail. The English edition provides a comprehensive update to an enduring classic. Combining the lucid exposition of the original text with extensive new material, it will be a valuable resource for researchers in discrete geometry for decades to come.




Handbook of Discrete and Computational Geometry


Book Description

The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.




Handbook of Discrete and Computational Geometry, Second Edition


Book Description

While high-quality books and journals in this field continue to proliferate, none has yet come close to matching the Handbook of Discrete and Computational Geometry, which in its first edition, quickly became the definitive reference work in its field. But with the rapid growth of the discipline and the many advances made over the past seven years, it's time to bring this standard-setting reference up to date. Editors Jacob E. Goodman and Joseph O'Rourke reassembled their stellar panel of contributors, added manymore, and together thoroughly revised their work to make the most important results and methods, both classic and cutting-edge, accessible in one convenient volume. Now over more then 1500 pages, the Handbook of Discrete and Computational Geometry, Second Edition once again provides unparalleled, authoritative coverage of theory, methods, and applications. Highlights of the Second Edition: Thirteen new chapters: Five on applications and others on collision detection, nearest neighbors in high-dimensional spaces, curve and surface reconstruction, embeddings of finite metric spaces, polygonal linkages, the discrepancy method, and geometric graph theory Thorough revisions of all remaining chapters Extended coverage of computational geometry software, now comprising two chapters: one on the LEDA and CGAL libraries, the other on additional software Two indices: An Index of Defined Terms and an Index of Cited Authors Greatly expanded bibliographies




Sphere Packings


Book Description

Sphere packings is one of the most fascinating and challenging subjects in mathematics. In the course of centuries, many exciting results have been obtained, ingenious methods created, related challenging problems proposed, and many surprising connections with other subjects found. This book gives a full account of this fascinating subject, especially its local aspects, discrete aspects, and its proof methods. The book includes both classical and contemporary results and provides a full treatment of the subject.