Biotechnology and Food Process Engineering


Book Description

Biotechnology and its implication for the future, introduction to bio reactor engineering, bioreactor considerations for producing flavors and pigments from plant tissue culture, membrane bioreactors: enzime processes, food freeze concentration, supercritical fluid extraction, drying of foods, aseptic processing of foods, encapsulation and con trolled release do food components, extrusion of foods, developments in microwave food processing, robotics in food processing, integrationof computers in food processing.







Bioprocess Engineering


Book Description

Bioprocess Engineering involves the design and development of equipment and processes for the manufacturing of products such as food, feed, pharmaceuticals, nutraceuticals, chemicals, and polymers and paper from biological materials. It also deals with studying various biotechnological processes. "Bioprocess Kinetics and Systems Engineering" first of its kind contains systematic and comprehensive content on bioprocess kinetics, bioprocess systems, sustainability and reaction engineering. Dr. Shijie Liu reviews the relevant fundamentals of chemical kinetics-including batch and continuous reactors, biochemistry, microbiology, molecular biology, reaction engineering, and bioprocess systems engineering- introducing key principles that enable bioprocess engineers to engage in the analysis, optimization, design and consistent control over biological and chemical transformations. The quantitative treatment of bioprocesses is the central theme of this book, while more advanced techniques and applications are covered with some depth. Many theoretical derivations and simplifications are used to demonstrate how empirical kinetic models are applicable to complicated bioprocess systems. - Contains extensive illustrative drawings which make the understanding of the subject easy - Contains worked examples of the various process parameters, their significance and their specific practical use - Provides the theory of bioprocess kinetics from simple concepts to complex metabolic pathways - Incorporates sustainability concepts into the various bioprocesses




Handbook of Food and Bioprocess Modeling Techniques


Book Description

With the advancement of computers, the use of modeling to reduce time and expense, and improve process optimization, predictive capability, process automation, and control possibilities, is now an integral part of food science and engineering. New technology and ease of use expands the range of techniques that scientists and researchers have at the




Food and Industrial Bioproducts and Bioprocessing


Book Description

Food and Industrial Bioproducts and Bioprocessing describes the engineering aspects of bioprocessing, including advanced food processing techniques and bioproduct development. The main focus of the book is on food applications, while numerous industrial applications are highlighted as well. The editors and authors, all experts in various bioprocessing fields, cover the latest developments in the industry and provide perspective on new and potential products and processes. Challenges and opportunities facing the bioproduct manufacturing industry are also discussed. Coverage is far-reaching and includes: current and future biomass sources and bioprocesses; oilseed processing and refining; starch and protein processing; non-thermal food processing; fermentation; extraction techniques; enzymatic conversions; nanotechnology; microencapsulation and emulsion techniques; bioproducts from fungi and algae; biopolymers; and biodegradable/edible packaging. Researchers and product developers in food science, agriculture, engineering, bioprocessing and bioproduct development will find Food and Industrial Bioproducts and Bioprocessing an invaluable resource.




Food Process Engineering


Book Description




Bioprocess Engineering for a Green Environment


Book Description

Bioprocess Engineering for a Green Environment examines numerous bioprocesses that are crucial to our day-to-day life, specifically the major issues surrounding the production of energy relating to biofuels and waste management. The nuance of this discussion is reflected by the text’s chapter breakdown, providing the reader with a fulsome investigation of the energy sector; the importance of third-generation fuels; and the application of micro- and macroalgae for the production of biofuels. The book also provides a detailed exploration of biocatalysts and their application to the food industry; bioplastics production; conversion of agrowaste into polysaccharides; as well as the importance of biotechnology in bio-processing. Numerous industries discharge massive amounts of effluents into our rivers, seas, and air systems. As such, two chapters are dedicated to the treatment of various pollutants through biological operation with hopes of achieving a cleaner, greener, environment. This book represents the most comprehensive study of bioprocessing—and its various applications to the environment—available on the market today. It was furthermore written with various researchers in mind, ranging from undergraduate and graduate students looking to enhance their knowledge of the topics presented to scholars and engineers interested in the bioprocessing field, as well as members of industry and policy-makers. Provides a comprehensive overview of bioprocesses that apply to day-to-day living. Is learner-centered, providing detailed diagrams for easy understanding. Explores the importance of biocatalysts and their applications to the food industry, as well as bioplastics production. Examines the unique capabilities of bioprocess engineering and its ability to treat various pollutants. .




Advances in Food Bioproducts and Bioprocessing Technologies


Book Description

The book explores and exploits the synergy and boundary between biotechnology, bioprocessing and food engineering. Divided into three parts, Advances in Food Bioproducts and Bioprocessing Technologies includes contributions that deal with new developments in procedures, bioproducts, and bioprocesses that can be given quantitative expression. Its 40 chapters will describe how research results can be used in engineering design, include procedures to produce food additives and ingredients, and discuss accounts of experimental or theoretical research and recent advances in food bioproducts and bioprocessing technologies.




Cell Culture Bioprocess Engineering, Second Edition


Book Description

This book is the culmination of three decades of accumulated experience in teaching biotechnology professionals. It distills the fundamental principles and essential knowledge of cell culture processes from across many different disciplines and presents them in a series of easy-to-follow, comprehensive chapters. Practicality, including technological advances and best practices, is emphasized. This second edition consists of major updates to all relevant topics contained within this work. The previous edition has been successfully used in training courses on cell culture bioprocessing over the past seven years. The format of the book is well-suited to fast-paced learning, such as is found in the intensive short course, since the key take-home messages are prominently highlighted in panels. The book is also well-suited to act as a reference guide for experienced industrial practitioners of mammalian cell cultivation for the production of biologics.




Bioprocess Engineering


Book Description

For Senior-level and graduate courses in Biochemical Engineering, and for programs in Agricultural and Biological Engineering or Bioengineering. This concise yet comprehensive text introduces the essential concepts of bioprocessing-internal structure and functions of different types of microorganisms, major metabolic pathways, enzymes, microbial genetics, kinetics and stoichiometry of growth and product information-to traditional chemical engineers and those in related disciplines. It explores the engineering principles necessary for bioprocess synthesis and design, and illustrates the application of these principles to modern biotechnology for production of pharmaceuticals and biologics, solution of environmental problems, production of commodities, and medical applications.