Fourier Multispectral Imaging


Book Description

There are many limitations to existing multispectral imaging modalities, such as speed, cost, range, spatial resolution, and application-specific system designs that lade generality. In this dissertation thesis, we propose a novel general-purpose multispectral imaging (MSI) modality. Central to this MSI design is a new type of spectral filters based not on the notion of narrowband filters, but instead using Fourier transform spectroscopy. Firstly, we verified the performance of our MSI system by simulation. Then, two initial prototypes based on this new idea are built and tested with real data capture. The results show that spectral features such as transmission and absorption peaks are preserved with this technique, proving that it is a more versatile technique compared to the narrowband filters for a wide range of multispectral imaging applications. We demonstrated single-shot multispectral imaging capability with a spectral filter array (SFA) pattern prototype designed to minimize the risk of spatial aliasing.




Fourier Multispectral Imaging in the Shortwave Infrared


Book Description

Most multispectral systems try to measure incoming spectra with narrow-band filters at specific central wavelengths which are chosen based upon the application. A shortwave infrared (SWIR) multispectral system using concepts from Fourier multispectral imaging was designed with approximately sinusoidal spectral transmission filters. The filters were implemented as single cavity thin film resonators of varying thicknesses. The prototype system was evaluated using narrow-band spectra with single peaks, narrow-band spectra with multiple peaks, and broadband spectra with atmospheric absorption characteristics. The results show that this technique preserves spectral peaks and absorption bands even though the filters are not perfectly sinusoidal. Additionally, preliminary detection results were evaluated using a synthetic scene.




Fourier Analysis and Imaging


Book Description

As Lord Kelvin said, "Fourier's theorem is not only one of the most beautiful results of modern analysis, but it may be said to furnish an indispensable instrument in the treatment of nearly every recondite question in modern physics." This has remained durable knowledge for a century, and has extended its applicability to topics as diverse as medical imaging (CT scanning), the presentation of images on screens and their digital transmission, remote sensing, geophysical exploration, and many branches of engineering. Fourier Analysis and Imaging is based on years of teaching a course on the Fourier Transform at the senior or early graduate level, as well as on Prof. Bracewell's 1995 text Two-Dimensional Imaging. It is an excellent textbook and will also be a welcome addition to the reference library of those many professionals whose daily activities involve Fourier analysis in its many guises.







Fourier Methods in Imaging


Book Description

Fourier Methods in Imaging introduces the mathematical tools for modeling linear imaging systems to predict the action of the system or for solving for the input. The chapters are grouped into five sections, the first introduces the imaging “tasks” (direct, inverse, and system analysis), the basic concepts of linear algebra for vectors and functions, including complex-valued vectors, and inner products of vectors and functions. The second section defines "special" functions, mathematical operations, and transformations that are useful for describing imaging systems. Among these are the Fourier transforms of 1-D and 2-D function, and the Hankel and Radon transforms. This section also considers approximations of the Fourier transform. The third and fourth sections examine the discrete Fourier transform and the description of imaging systems as linear "filters", including the inverse, matched, Wiener and Wiener-Helstrom filters. The final section examines applications of linear system models to optical imaging systems, including holography. Provides a unified mathematical description of imaging systems. Develops a consistent mathematical formalism for characterizing imaging systems. Helps the reader develop an intuitive grasp of the most common mathematical methods, useful for describing the action of general linear systems on signals of one or more spatial dimensions. Offers parallel descriptions of continuous and discrete cases. Includes many graphical and pictorial examples to illustrate the concepts. This book helps students develop an understanding of mathematical tools for describing general one- and two-dimensional linear imaging systems, and will also serve as a reference for engineers and scientists




Fourier Ptychographic Imaging


Book Description

This book demonstrates the concept of Fourier ptychography, a new imaging technique that bypasses the resolution limit of the employed optics. In particular, it transforms the general challenge of high-throughput, high-resolution imaging from one that is coupled to the physical limitations of the optics to one that is solvable through computation. Demonstrated in a tutorial form and providing many MATLAB® simulation examples for the reader, it also discusses the experimental implementation and recent developments of Fourier ptychography. This book will be of interest to researchers and engineers learning simulation techniques for Fourier optics and the Fourier ptychography concept.







Digital Processing of Remotely Sensed Images


Book Description

The foundations of image processing were reviewed. Imaging techniques are discussed and include: image resolution, image enhancement, image registration, image overlaying and mosaicking, image analysis and classification, and image data compression.




Fourier Transform Hyperspectral Imaging for Cultural Heritage


Book Description

Hyperspectral imaging is a technique of analysis that associates to each pixel of the image the spectral content of the radiation coming from the scene. This content can be helpful to recognize the chemical nature of the materials within the scene or to calculate their colours under particular conditions. Different solutions of hyperspectral imager have been realized with different spatial resolution, spectral resolution and range in the electromagnetic spectrum. In particular, improving the spectral resolution allows discriminating smaller features in the spectrum and the unambiguous detection of the absorption bands characteristic of superficial materials. Hyperspectral imagers based on interferometers have the advantage of having a spectral resolution that can be varied according to the needs by changing the optical path delay of the interferometer. A spectrum for each pixel is obtained with an algorithm based on the Fourier transform of the calibrated interferogram. We present the results of the application of a hyperspectral imager based on Fabry-Perot interferometers to the field of cultural heritage. On different artworks, the hyperspectral imager has been used for pigment recognition, for colour rendering elaborations of the image with different light sources or standard illuminants and for calculating the chromatic coordinates useful for specific purposes.




Dynamic Multispectral Imaging System with Spectral Zooming Capability and Its Applications


Book Description

The main focus of this dissertation is to develop a multispectral imaging system with spectral zooming capability and also successfully demonstrate its promising medical applications through combining this technique with microscope system. The realization of the multispectral imaging method in this dissertation is based on the 4-f spatial filtering principle. When a collimated light is dispersed by the grating, there exists a clear linear distribution spectral line or spectrum at the Fourier plane of the Fourier transform lens group base on the Abbe imaging theory and optics Fourier Transform principle. The optical images, not the collimated light, are applied into this setup and the spectrum distribution still keeps linear relationship with the spatial positions at Fourier plane, even through there exists additional spectral crosstalk or overlap. The spatial filter or dynamic electrical filters used at the Fourier plane will facilitate randomly access the desired spectral waveband and agilely adjust the passband width. It offers the multispectral imaging functionality with spectral zooming capability. The system is flexible and efficiency. A dual-channel spectral imaging system based on the multispectral imaging method and acousto-optical tunable filter (AOTF) is proposed in the dissertation. The multispectral imaging method and the AOTF will form spate imaging channels and the two spectral channels work together to enhance the system efficiency. The AOTF retro reflection design is explored in the dissertation and experimental results demonstrate this design could effectively improve the spectral resolution of the passband. Moreover, a field lens is introduced into the multispectral imaging system to enhance the field of view of the system detection range. The application of field lens also improves the system spectral resolution, image quality and minimizes the system size. This spectral imaging system can be used for many applications. The compact prototype multispectral imaging system has been built and many outdoor remote spectral imaging tests have been performed. The spectral imaging design has also been successfully applied into microscope imaging. The prototype multispectral microscopy system shows excellent capability for normal optical detection of medical specimen and fluorescent emission imaging/diagnosis. Experiment results have demonstrated this design could realize both spectral zoom and optical zoom at the same time. This design facilitates fast spectral waveband adjustment as well as increasing speed, flexibility, and reduced cost.