Direct Numerical Simulation of Compressible Turbulent Flows, Using Adaptive Spectral Element Method


Book Description

In this final report covering the period 1993-1994, the preliminary results of the research on direct numerical simulation of compressible turbulent flows are presented. Specifically, the adaptive Legendre polynomial spectral element method with the mixed explicit-implicit(MEI) Taylor-Galericin formulation is used in order to capture detailed physics involved in three-dimensional shock wave turbulent boundary layer interactions. (AN).




Compressibility, Turbulence and High Speed Flow


Book Description

Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current trends. An introduction to current techniques in compressible turbulent flow analysis An approach that enables engineers to identify and solve complex compressible flow challenges Prediction methodologies, including the Reynolds-averaged Navier Stokes (RANS) method, scale filtered methods and direct numerical simulation (DNS) Current strategies focusing on compressible flow control







IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach


Book Description

The book describes the main findings of the EU-funded project IDIHOM (Industrialization of High-Order Methods – A Top-Down Approach). The goal of this project was the improvement, utilization and demonstration of innovative higher-order simulation capabilities for large-scale aerodynamic application challenges in the aircraft industry. The IDIHOM consortium consisted of 21 organizations, including aircraft manufacturers, software vendors, as well as the major European research establishments and several universities, all of them with proven expertise in the field of computational fluid dynamics. After a general introduction to the project, the book reports on new approaches for curved boundary-grid generation, high-order solution methods and visualization techniques. It summarizes the achievements, weaknesses and perspectives of the new simulation capabilities developed by the project partners for various industrial applications, and includes internal- and external-aerodynamic as well as multidisciplinary test cases.




Advanced Turbulent Flow Computations


Book Description

This book collects the lecture notes concerning the IUTAM School on Advanced Turbulent Flow Computations held at CISM in Udine September 7–11, 1998. The course was intended for scientists, engineers and post-graduate students interested in the application of advanced numerical techniques for simulating turbulent flows. The topic comprises two closely connected main subjects: modelling and computation, mesh pionts necessary to simulate complex turbulent flow.










Advanced Approaches in Turbulence


Book Description

Advanced Approaches in Turbulence: Theory, Modeling, Simulation and Data Analysis for Turbulent Flows focuses on the updated theory, simulation and data analysis of turbulence dealing mainly with turbulence modeling instead of the physics of turbulence. Beginning with the basics of turbulence, the book discusses closure modeling, direct simulation, large eddy simulation and hybrid simulation. The book also covers the entire spectrum of turbulence models for both single-phase and multi-phase flows, as well as turbulence in compressible flow. Turbulence modeling is very extensive and continuously updated with new achievements and improvements of the models. Modern advances in computer speed offer the potential for elaborate numerical analysis of turbulent fluid flow while advances in instrumentation are creating large amounts of data. This book covers these topics in great detail. - Covers the fundamentals of turbulence updated with recent developments - Focuses on hybrid methods such as DES and wall-modeled LES - Gives an updated treatment of numerical simulation and data analysis




Turbulent Flow Computation


Book Description

In various branches of fluid mechanics, our understanding is inhibited by the presence of turbulence. Although many experimental and theoretical studies have significantly helped to increase our physical understanding, a comp- hensive and predictive theory of turbulent flows has not yet been established. Therefore, the prediction of turbulent flow relies heavily on simulation stra- gies. The development of reliable methods for turbulent flow computation will have a significant impact on a variety of technological advancements. These range from aircraft and car design, to turbomachinery, combustors, and process engineering. Moreover, simulation approaches are important in materials - sign, prediction of biologically relevant flows, and also significantly contribute to the understanding of environmental processes including weather and climate forecasting. The material that is compiled in this book presents a coherent account of contemporary computational approaches for turbulent flows. It aims to p- vide the reader with information about the current state of the art as well as to stimulate directions for future research and development. The book puts part- ular emphasis on computational methods for incompressible and compressible turbulent flows as well as on methods for analysing and quantifying nume- cal errors in turbulent flow computations. In addition, it presents turbulence modelling approaches in the context of large eddy simulation, and unfolds the challenges in the field of simulations for multiphase flows and computational fluid dynamics (CFD) of engineering flows in complex geometries. Apart from reviewing main research developments, new material is also included in many of the chapters.