Ideal MHD Stability Calculations in Axisymmetric Toroidal Coordinate Systems


Book Description

A scalar form of the ideal MHD energy principle is shown to provide a more accurate and efficient numerical method for determining the stability of an axisymmetric toroidal equilibrium than the usual vector form. Additional improvement is obtained by employing a class of straight magnetic field line flux coordinates which allow for an optimal choice of the poloidal angle in the minor cross section of the torus. The usefulness of these techniques is illustrated by a study (using a new code, PEST 2) of the convergence properties of the finite element Galerkin representation in tokamak and spheromak geometries, and by the accurate determination of critical .beta. values for ballooning modes.







Advanced Magnetohydrodynamics


Book Description

Following on from the companion volume Principles of Magnetohydrodynamics, this textbook analyzes the applications of plasma physics to thermonuclear fusion and plasma astrophysics from the single viewpoint of MHD. This approach turns out to be ever more powerful when applied to streaming plasmas (the vast majority of visible matter in the Universe), toroidal plasmas (the most promising approach to fusion energy), and nonlinear dynamics (where it all comes together with modern computational techniques and extreme transonic and relativistic plasma flows). The textbook interweaves theory and explicit calculations of waves and instabilities of streaming plasmas in complex magnetic geometries. It is ideally suited to advanced undergraduate and graduate courses in plasma physics and astrophysics.




Magnetohydrodynamics


Book Description

An introduction to magnetohydrodynamics combining theory with advanced topics including the applications of plasma physics to thermonuclear fusion and plasma astrophysics.







NOVA


Book Description

A nonvariational approach for determining the ideal MHD stability of axisymmetric toroidal confinement systems is presented. The code (NOVA) employs cubic B-spline finite elements and Fourier expansion in a general flux coordinate (psi, theta, zeta) system. Better accuracy and faster convergence were obtained in comparison with the variational PEST and ERATO codes. The nonvariational approach can be extended to problems having non-Hermitian eigenmode equations where variational energy principles cannot be obtained.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




The Computation of Resistive MHD Instabilities in Axisymmetric Toroidal Plasmas


Book Description

We describe the linear MHD eigenmode code NOVA-R, which calculates the resistive stability of axisymmetric toroidal equilibria. A formulation has been adopted which accurately resolves the continuum spectrum of the ideal MHD operator. The resistive MHD stability equations are transformed into three coupled second order equations, one of which recovers the equation solved by the NOVA code in the ideal limit. The eigenfunctions are represented by a Fourier expansion and cubic B-spline finite elements which are packed about the internal boundary layer. Accurate results are presented for dimensionless resistivities as low as 10−3° in cylindrical geometry. For axisymmetric toroidal plasmas we demonstrate the accuracy of the NOVA-R code by recovering ideal results in the? 2!0 limit, and cylindrical resistive interchange results in the a/R 2!limit.???????? analysis performed using the eigenfunctions computed by the NOVA-R code agree with the asymptotic matching results from the resistive PEST code for zero beta equilibria. 33 refs., 30 figs.




Kinetic Extensions of Magnetohydrodynamic Models for Axisymmetric Toroidal Plasmas


Book Description

A nonvariational kinetic-MHD stability code (NOVA-K) has been developed to integrate a set of non-Hermitian integro-differential eigenmode equations due to energetic particles for axisymmetric toroidal plasmas in a general flux coordinate system with an arbitrary Jacobian. The NOVA-K code employs the Galerkin method involving Fourier expansions in the generalized poloidal angle theta and generalized toroidal angle [zeta] directions, and cubic-B spline finite elements in the radial [Psi] direction. Extensive comparisons with the existing variational ideal MHD codes show that the ideal MHD version of the NOVA-K code converges faster and gives more accurate results. The NOVA-K code is employed to study the effects of energetic particles on MHD-type modes: the stabilization of ideal MHD internal kink modes and the excitation of ''fishbone'' internal kink modes; and the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are also presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n = 1 internal kink mode in the hot particle beta space exists even in the absence of the core ion finite Larmor radius effect. On the other hand, the trapped alpha particles are found to have negligible effects on the stability of the n = 1 internal kink mode, but the circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 60 refs., 24 figs., 1 tab.