Characterization of Shallow Impurities in High Purity Gallium Arsenide and Indium Phosphide Using Photothermal Ionization Spectroscopy


Book Description

The incorporation and amphoteric behavior of Group IV impurities in high purity gallium arsenide (GaAs) and indium phosphide (InP) grown by various growth techniques have been quantitatively studied by employing the characterization techniques, Hall-effect measurements, photothermal ionization spectroscopy (PTIS), and photoluminescence (PL). These quantitative analyses have been made on over 500 different GaAs samples provided from about 50 different laboratories and 50 different InP samples from 15 different laboratories as grown by the growth techniques of liquid phase epitaxy (LPE), vapor phase epitaxy (VPE), molecular beam epitaxy (MBE), and metalorganic chemical vapor deposition (MOCVD). With these quantitative analyses, the incorporation and amphoteric behavior of Group IV impurities have been correlated with the growth techniques and various independent growth parameters, particularly V/III ratios and substrate orientations. The spectroscopic analysis indicates that the relative ordering of central cell correction of shallow donor impurities in InP are identical to that of GaAs, but the amphoteric behavior of Si in LPE InP is opposite to that in LPE GaAs. Although Ge was always more amphoteric than Si, the values of amphoteric ratios of both Si and Ge in GaAs (100) layers were not noticeably changed with varying V/III ratios or other growth conditions for all of the growth techniques. The orientation dependent amphoteric behavior of Si, Ge, and C in MBE and AsCl$sb3$-MBE GaAs samples strongly suggests that the surface kinetic reactions during epitaxial growth play the dominant role in the amphoteric behavior. Obviously, the above results on the amphoteric behavior cannot be explained by the simple equilibrium thermodynamic consideration alone. The surface kinetic model has been developed to explain the amphoteric behavior of Group IV impurities in MBE and VPE GaAs. The major surface reactions for impurity incorporation involve adsorption, surface diffusion, dissociative chemisorption, and desorption, which are the rate limiting processes that can be different for different substrate orientation and different chemical impurity and/or source species used for the different growth techniques.
















Chemical Abstracts


Book Description




Physics Briefs


Book Description







Low Temperature Magneto-photoluminescence Characterization of High Purity Gallium Arsenide and Indium Phosphide


Book Description

Low-temperature magneto-photoluminescence is a very powerful technique to characterize high purity GaAs and InP grown by various epitaxial techniques. These III-V compound semiconductor materials are used in a wide variety of electronic, optoelectronic and microwave devices. The large binding energy differences of acceptors in GaAs and InP make possible the identification of those impurities by low-temperature photoluminescence without the use of any magnetic field. However, the sensitivity and resolution provided by this technique remains inadequate to resolve the minute binding energy differences of donors in GaAs and InP. To achieve higher sensitivity and resolution needed for the identification of donors, a magneto-photoluminescence system is installed along with a tunable dye laser, which provides resonant excitation. Donors in high purity GaAs are identified from the magnetic splittings of "two-electron" satellites of donor bound exciton transitions in a high magnetic field and at liquid helium temperature. This technique is successfully used to identify donors in n-type GaAs as well as in p-type GaAs in which donors cannot be identified by any other technique. The technique is also employed to identify donors in high purity InP. The amphoteric incorporation of Si and Ge impurities as donors and acceptors in (100), (311)A and (311)B GaAs grown by molecular beam epitaxy is studied spectroscopically. The hydrogen passivation of C acceptors in high purity GaAs grown by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) is investigated using photoluminescence. Si acceptors in MBE GaAs are also found to be passivated by hydrogenation. The instabilities in the passivation of acceptor impurities are observed for the exposure of those samples to light. Very high purity MOCVD InP samples with extremely high mobility are characterized by both electrical and optical techniques. It is determined that C is not typically incorporated as a residual acceptor in high purity MOCVD InP. Finally, GaAs on Si, single quantum well, and multiple quantum well heterostructures, which are fabricated from III-V semiconductors, are also measured by low-temperature photoluminescence.