Information Theory and Coding - Solved Problems


Book Description

This book is offers a comprehensive overview of information theory and error control coding, using a different approach then in existed literature. The chapters are organized according to the Shannon system model, where one block affects the others. A relatively brief theoretical introduction is provided at the beginning of every chapter, including a few additional examples and explanations, but without any proofs. And a short overview of some aspects of abstract algebra is given at the end of the corresponding chapters. The characteristic complex examples with a lot of illustrations and tables are chosen to provide detailed insights into the nature of the problem. Some limiting cases are presented to illustrate the connections with the theoretical bounds. The numerical values are carefully selected to provide in-depth explanations of the described algorithms. Although the examples in the different chapters can be considered separately, they are mutually connected and the conclusions for one considered problem relate to the others in the book.




Information Theory and Coding by Example


Book Description

A valuable teaching aid. Provides relevant background material, many examples and clear solutions to problems taken from real exam papers.




Elements of Information Theory


Book Description

The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.




Coding and Information Theory


Book Description

Focusing on both theory and practical applications, this volume combines in a natural way the two major aspects of information representation--representation for storage (coding theory) and representation for transmission (information theory).




Information and Coding Theory


Book Description

This text is an elementary introduction to information and coding theory. The first part focuses on information theory, covering uniquely decodable and instantaneous codes, Huffman coding, entropy, information channels, and Shannon’s Fundamental Theorem. In the second part, linear algebra is used to construct examples of such codes, such as the Hamming, Hadamard, Golay and Reed-Muller codes. Contains proofs, worked examples, and exercises.




Information Theory, Inference and Learning Algorithms


Book Description

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.




Coding and Information Theory


Book Description

This book is an introduction to information and coding theory at the graduate or advanced undergraduate level. It assumes a basic knowledge of probability and modern algebra, but is otherwise self- contained. The intent is to describe as clearly as possible the fundamental issues involved in these subjects, rather than covering all aspects in an encyclopedic fashion. The first quarter of the book is devoted to information theory, including a proof of Shannon's famous Noisy Coding Theorem. The remainder of the book is devoted to coding theory and is independent of the information theory portion of the book. After a brief discussion of general families of codes, the author discusses linear codes (including the Hamming, Golary, the Reed-Muller codes), finite fields, and cyclic codes (including the BCH, Reed-Solomon, Justesen, Goppa, and Quadratic Residue codes). An appendix reviews relevant topics from modern algebra.




Fundamentals in Information Theory and Coding


Book Description

The work introduces the fundamentals concerning the measure of discrete information, the modeling of discrete sources without and with a memory, as well as of channels and coding. The understanding of the theoretical matter is supported by many examples. One particular emphasis is put on the explanation of Genomic Coding. Many examples throughout the book are chosen from this particular area and several parts of the book are devoted to this exciting implication of coding.




Information Theory, Coding and Cryptography


Book Description

Information Theory, Coding & Cryptography has been designed as a comprehensive book for the students of engineering discussing Source Encoding, Error Control Codes & Cryptography. The book contains the recent developments of coded modulation, trellises for codes, turbo coding for reliable data and interleaving. The text balances the mathematical rigor with exhaustive amount of solved, unsolved questions along with a database of MCQs.




Applied Coding and Information Theory for Engineers


Book Description

This book provides a practical introduction to the theory and practice of coding and information theory for application in the field of electronic communications. It is written at an introductory level and assumes no prior background in coding or information theory. While the mathematical level is detailed, it is still introductory. Through a discussion that balances theory and practical applications and abandons the traditional "theorem-proof" format, this valuable book presents an overview of digital communication systems and the concept of information. It is written in a easy-to-follow conversational style that integrates practical engineering issues through formal and conceptual discussions of mathematical issues. It also makes extensive use of explicit examples that illustrate methods and theory throughout the book. For the professional, it provides an essential hands-on head start for real-world projects and situations. An essential reference for professional engineers in the field of electronic communications.