Inherent and Model-form Uncertainty Analysis for CFD Simulation of Synthetic Jet Actuators


Book Description

"A mixed aleatory (inherent) and epistemic (model-form) uncertainty quantification (UQ) analysis method was applied to a computational fluid dynamics (CFD) modeling problem of synthetic jet actuators. A test case, (Case 3, flow over a hump model with synthetic jet actuator control) from the CFDVAL2004 workshop was selected to apply the Second-Order Probability framework implemented with a stochastic response surface obtained from Quadrature-Based Non-Intrusive Polynomial Chaos (NIPC). Three uncertainty sources were considered: (1) epistemic uncertainty in turbulence model, (2) aleatory uncertainty in free stream velocity and (3) aleatory uncertainty in actuation frequency. Uncertainties in both long-time averaged and phase averaged quantities were quantified using a fourth order polynomial chaos expansion (PCE). Results were compared with experimental data available. A global sensitivity analysis with Sobol indices was utilized to rank the importance of each uncertainty source to the overall output uncertainty. The results indicated that for the long-time averaged separation bubble size, the uncertainty in turbulence model had a dominant contribution, which was also observed in the long-time averaged skin friction coefficients at three selected locations. For long-time averaged pressure coefficient, the contributions from free stream velocity and turbulence model are depending on the locations. The mixed UQ results for phase averaged x-velocity distributions at three selected locations showed that the 95% confidence intervals (CI) could generally envelope the experimental data. The Sobol indices showed that near the wall, the turbulence model had a main influence on the x-velocity, while approaching the main stream, the uncertainty in free stream velocity became a larger contributor. The uncertainty in frequency was found to have a very small contribution to both long-time averaged and phase averaged quantities with the range of variance considered"--Abstract, leaf iii.




Uncertainty Quantification In Computational Science: Theory And Application In Fluids And Structural Mechanics


Book Description

During the last decade, research in Uncertainty Quantification (UC) has received a tremendous boost, in fluid engineering and coupled structural-fluids systems. New algorithms and adaptive variants have also emerged.This timely compendium overviews in detail the current state of the art of the field, including advances in structural engineering, along with the recent focus on fluids and coupled systems. Such a strong compilation of these vibrant research areas will certainly be an inspirational reference material for the scientific community.




Uncertainty Quantification Integrated to Computational Fluid Dynamic Modeling of Synthetic Jet Actuators


Book Description

"The Point Collocation Non-Intrusive Polynomial Chaos (NIPC) method was applied to a stochastic synthetic jet actuator problem to demonstrate the integration of computationally efficient uncertainty quantification to the high-fidelity CFD modeling of Synthetic Jet Actuators. The uncertainty quantification approach was first implemented in two stochastic model problem cases for the prediction of peak exit plane velocity using a Fluid Dynamic Based analytical model of the Synthetic Jet Actuator, which is computationally less expensive than CFD simulations. The NIPC results were compared with direct Monte Carlo sampling results. To demonstrate the efficient uncertainty quantification in CFD modeling of synthetic jet actuators, a test case, Case 1 (synthetic jet issuing into quiescent air), was selected from the CFDVal2004 workshop. In the stochastic CFD problem, the NIPC method was used to quantify the uncertainty in the long-time averaged u and v-velocities at several locations in the flow field, due to the uncertainty in the amplitude and frequency of the oscillation of the piezo-electric membrane. Fifth order NIPC expansions were used to obtain the uncertainty information which showed that the variation in the v-velocity is high in the region directly above the jet slot and the variation in the u-velocity is maximum in the region immediately adjacent to the slot. Even with a ten percent variation in the amplitude and frequency, the long-time averaged u and v-velocity profiles could not match the experimental measurements at y = 0.1mm above the slot, indicating that the discrepancy may be due to other uncertainty sources in CFD or measurement errors. A global sensitivity analysis using linear regression approach indicated that the frequency had a stronger contribution to the overall uncertainty in the long-time averaged flow field velocity for the range of input uncertainties considered in this study. Overall, the results obtained in this study showed the potential of Non-Intrusive Polynomial Chaos as an effective uncertainty quantification method for computationally expensive high-fidelity CFD simulations applied to the stochastic modeling of synthetic jet flow fields"--Abstract, leaf iii




Application of Fun3d and Cfl3d to the Third Workshop on Cfd Uncertainty Analysis


Book Description

Two Reynolds-averaged Navier-Stokes computer codes - one unstructured and one structured - are applied to two workshop cases (for the 3rd Workshop on CFD Uncertainty Analysis, held at Instituto Superior Tecnico, Lisbon, in October 2008) for the purpose of uncertainty analysis. The Spalart-Allmaras turbulence model is employed. The first case uses the method of manufactured solution and is intended as a verification case. In other words, the CFD solution is expected to approach the exact solution as the grid is refined. The second case is a validation case (comparison against experiment), for which modeling errors inherent in the turbulence model and errors/uncertainty in the experiment may prevent close agreement. The results from the two computer codes are also compared. This exercise verifies that the codes are consistent both with the exact manufactured solution and with each other. In terms of order property, both codes behave as expected for the manufactured solution. For the backward facing step, CFD uncertainty on the finest grid is computed and is generally very low for both codes (whose results are nearly identical). Agreement with experiment is good at some locations for particular variables, but there are also many areas where the CFD and experimental uncertainties do not overlap. Rumsey, C. L. and Thomas, J. L. Langley Research Center COMPUTATIONAL FLUID DYNAMICS; ERROR ANALYSIS; NAVIER-STOKES EQUATION; TURBULENCE MODELS; REYNOLDS EQUATION; POSITION (LOCATION); COMPUTER PROGRAMS; WORDS (LANGUAGE); REFINING; UNCERTAIN SYSTEMS




Qantification of Model-form, Predictive, and Parametric Uncertainties in Simulation-based Design


Book Description

Traditional uncertainty quantification techniques in simulation-based analysis and design focus upon on the quantification of parametric uncertainties-inherent natural variations of the input variables. This is done by developing a representation of the uncertainties in the parameters and then efficiently propagating this information through the modeling process to develop distributions or metrics regarding the output responses of interest. However, in problems with complex or newer modeling methodologies, the variabilities induced by the modeling process itself-known collectively as model-form and predictive uncertainty-can become a significant, if not greater source of uncertainty to the problem. As such, for efficient and accurate uncertainty measurements, it is necessary to consider the effects of these two additional forms of uncertainty along with the inherent parametric uncertainty. However, current methods utilized for parametric uncertainty quantification are not necessarily viable or applicable to quantify model-form or predictive uncertainties. Additionally, the quantification of these two additional forms of uncertainty can require the introduction of additional data into the problem-such as experimental data-which might not be available for particular designs and configurations, especially in the early design-stage. As such, methods must be developed for the efficient quantification of uncertainties from all sources, as well as from all permutations of sources to handle problems where a full array of input data is unavailable. This work develops and applies methods for the quantification of these uncertainties with specific application to the simulation-based analysis of aeroelastic structures.




A Reduced-Order Model for Efficient Simulation of Synthetic Jet Actuators


Book Description

A new reduced-order model of multidimensional synthetic jet actuators that combines the accuracy and conservation properties of full numerical simulation methods with the efficiency of simplified zero-order models is proposed. The multidimensional actuator is simulated by solving the time-dependent compressible quasi-1-D Euler equations, while the diaphragm is modeled as a moving boundary. The governing equations are approximated with a fourth-order finite difference scheme on a moving mesh such that one of the mesh boundaries coincides with the diaphragm. The reduced-order model of the actuator has several advantages. In contrast to the 3-D models, this approach provides conservation of mass, momentum, and energy. Furthermore, the new method is computationally much more efficient than the multidimensional Navier-Stokes simulation of the actuator cavity flow, while providing practically the same accuracy in the exterior flowfield. The most distinctive feature of the present model is its ability to predict the resonance characteristics of synthetic jet actuators; this is not practical when using the 3-D models because of the computational cost involved. Numerical results demonstrating the accuracy of the new reduced-order model and its limitations are presented.Yamaleev, Nail K. and Carpenter, Mark H.Langley Research CenterACTIVE CONTROL; JET FLOW; FINITE DIFFERENCE THEORY; NAVIER-STOKES EQUATION; ACTUATORS; CAVITY FLOW; THREE DIMENSIONAL MODELS; COMPUTATIONAL GRIDS; TIME DEPENDENCE...




Shock Wave-Boundary-Layer Interactions


Book Description

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.




Process Modelling and Simulation


Book Description

Since process models are nowadays ubiquitous in many applications, the challenges and alternatives related to their development, validation, and efficient use have become more apparent. In addition, the massive amounts of both offline and online data available today open the door for new applications and solutions. However, transforming data into useful models and information in the context of the process industry or of bio-systems requires specific approaches and considerations such as new modelling methodologies incorporating the complex, stochastic, hybrid and distributed nature of many processes in particular. The same can be said about the tools and software environments used to describe, code, and solve such models for their further exploitation. Going well beyond mere simulation tools, these advanced tools offer a software suite built around the models, facilitating tasks such as experiment design, parameter estimation, model initialization, validation, analysis, size reduction, discretization, optimization, distributed computation, co-simulation, etc. This Special Issue collects novel developments in these topics in order to address the challenges brought by the use of models in their different facets, and to reflect state of the art developments in methods, tools and industrial applications.




Modeling, Design and Optimization of Multiphase Systems in Minerals Processing


Book Description

Mineral processing deals with complex particle systems with two-, three- and more phases. The modeling and understanding of these systems are a challenge for research groups and a need for the industrial sector. This Special Issue aims to present new advances, methodologies, applications, and case studies of computer-aided analysis applied to multiphase systems in mineral processing. This includes aspects such as modeling, design, operation, optimization, uncertainty analysis, among other topics. The special issue contains a review article and eleven articles that cover different methodologies of modeling, design, optimization, and analysis in problems of adsorption, leaching, flotation, and magnetic separation, among others. Consequently, the topics covered are of interest to readers from academia and industry.




Handbook of Wind Energy Aerodynamics


Book Description

This handbook provides both a comprehensive overview and deep insights on the state-of-the-art methods used in wind turbine aerodynamics, as well as their advantages and limits. The focus of this work is specifically on wind turbines, where the aerodynamics are different from that of other fields due to the turbulent wind fields they face and the resultant differences in structural requirements. It gives a complete picture of research in the field, taking into account the different approaches which are applied. This book would be useful to professionals, academics, researchers and students working in the field.