Interplay Between Promoter Occupancy and Chromatin Remodeling Requirements in Transactivation of the S.cerevisiae PHO5 Gene


Book Description

In higher eukaryotes, DNA is packaged with histones and other proteins into chromatin. While this is important in the control of unwanted gene expression, chromatin also serves as a barrier to many vital functions in the cell. Therefore, cells have evolved many different types of chromatin remodeling enzymes to contend with this inhibitory structure and enable gene expression and other functions. The Saccharomyces cerevisiae PHO5 gene is triggered in response to phosphate starvation. In this study, I evaluate the chromatin remodeling requirements of this gene with respect to the multisubunit complexes SWI/SNF and SAGA. I show, for the first time, physical recruitment of SWI/SNF to the PHO5 promoter. I also demonstrate the role of promoter occupancy in influencing requirements for chromatin remodeling enzymes. Further, Idescribe various interactions between these two complexes at the PHO5 promoter. This study presents evidence for the first instance of excess recruitment of an ATP-dependent remodeler potentially compensating for the lack of a histone acetyltransferase.







Chromatin Dynamics at the Saccharomyces Cerevisiae PHO5 Promoter


Book Description

In eukaryotes, the organization of DNA into chromatin is a primary determinant of gene expression. Positioned nucleosomes in promoter regions are frequently found to regulate gene expression by obstructing the accessibility of cis-regulatory elements in DNA to trans-factors. This dissertation focuses on the chromatin structure and remodeling program at the S. cerevisiae PHO5 promoter, extending the use of DNA methyltransferases as in vivo probes of chromatin structure. Our studies address the diversity of histone-DNA interactions in vivo by examining nucleosome conformational stabilities at the PHO5 promoter. We present high-resolution chromatin structural mapping of the promoter, required to relate in vivo site accessibility to nucleosome stability and show that the PHO5 promoter nucleosomes have different accessibilities. We show a correlation between DNA curvature and nucleosome positioning, which is consistent with the observed differences in accessibility/stability. Kinetic analyses of the chromatin remodeling program at PHO5 show that nucleosomes proximal to the enhancer are disrupted preferentially and prior to those more distal, demonstrating bidirectional and finite propagation of chromatin remodeling from bound activators and providing a novel mechanism by which transactivation at a distance occurs.







The Interaction of Promoter Chromatin Architecture with the Cell Cycle Regulates Transcription Activation Kinetics


Book Description

The relationship between regulatory trans-factors binding a gene's cis-regulatory sequence elements and the transcriptional output of that gene is fundamental to even the most complex network behaviors such as metabolism and differentiation. In eukaryotes, chromatin dynamics on gene promoter sequences is an integral part of regulation, and nucleosome remodeling is often required for transcription activation. Though the transient response of these regulated genes is often important in biological contexts, the role of promoter chromatin architecture in activation kinetics is still unclear. We sought to investigate this relationship as well as possible links to the cell cycle, over which chromatin state experiences dramatic changes. To study the activation kinetics of individual promoters, we develop a method to infer real-time transcription rates from protein expression in single Saccharomyces cerevisiae cells using time-lapse fluorescence microscopy. Comparison between the instantaneous transcription rate and cell-cycle phase in each cell demonstrates the majority of transcriptional variability is due to cell cycle-dependent effects with noisy expression restricted to S/G2/M. This is in stark contrast to current stochastic models of gene expression, most of which do not account for extrinsic effects, and reveals a permissive activation period beginning each S-phase. We then employ a switchable transactivator system to probe transient response kinetics as a function of promoter chromatin architecture at the PHO5 promoter, a well-established model system for chromatin-regulated expression. While we show transactivator binding site affinity and location relative to nucleosomes influences promoter response kinetics, the effect is primarily through architecture-dependent reliance on a dominant, permissive activation period in S/G2. Together with similar observations at synthetic promoters using a chimerical, switchable transactivator, these results suggest the cell cycle has a general role in transcription activation. Based on the timing of the permissive period, DNA replication may play a direct role in transactivation. Thus, in network topologies involving noisy genes and positive feedback, the cell cycle-dependent transcription would lead to distinct predictions between frequently- and non-dividing cells. This work reveals an unappreciated yet dominant role for the cell cycle as a general regulator of transcription in eukaryotes with direct implications in better modeling and design of biological networks.







Transcriptional Regulation and Chromatin Remodeling Mechanisms at PHO5


Book Description

Regulation of gene expression is vital for proper growth and prevention of disease states. In eukaryotes this regulation occurs in the context of chromatin which creates an inherent barrier for the binding of trans-acting factors, such as transcription factors and RNA polymerase. This dissertation focuses on the role of transcriptional activators and chromatin remodeling coactivators in the regulation of the repressible acid phosphatase gene PHO5. Our studies show that histone methylation at lysine 4 of histone H3 is required for the full repression of PHO5and GAL1-10. We show that bromodomains, a domain conserved in chromatin remodeling coactivators, may function to stabilize binding. Finally, we present a strategy using DNA methyltransferases as in vivo probes to detect DNA-protein interactions and examine chromatin structure. We extend this strategy to zinc-finger proteins which can be engineered to bind to any desired DNA sequence as a means of targeting methylation with potential use in epigenetic silencing.




Chromatin


Book Description

Chromatin: Structure, Function, and History covers the basics of chromatin biology, beginning with the discoveries that culminated in the recognition of the nucleosome as the basic subunit of chromatin. Chromatin folding, nucleosome positioning, and histone variants are discussed, as well as research on chromatin modifications and remodeling, which exploded in the early to mid-1990s and led to widespread interest in epigenetics. Considerable attention is given to methods and experiments that led to key insights and recent developments such as the use of genome-wide approaches and innovations in imaging approaches are also emphasized. By providing historical background together with detailed discussion of contemporary studies, the book aims to instill in the reader an appreciation not only of our current knowledge of chromatin structure and function, but also of the remarkable path that has taken chromatin to the forefront of modern research. Provides a current, expansive, and well-documented resource on chromatin and epigenetics Addresses the role of chromatin in transcription regulation and chromatin abnormalities in disease Reviews the historical background of specific areas of chromatin research, enabling readers to understand how the field was born and to appreciate the discoveries and technical advances that have propelled it forward




Enhancers and Promoters


Book Description

This volume contains cutting-edge techniques to study the function of enhancers and promoters in depth. Chapters are divided into six sections and describe enhancer-promoter transcripts, nucleosome occupancy, DNA accessibility, chromatin interactions, protein-DNA interactions, functional analyses, and DNA methylation assays. Written in the Methods in Molecular Biology series format, chapters include comprehensive introductions, lists of the necessary materials and reagents, step-by-step laboratory protocols, and useful suggestions for troubleshooting. Authoritative and cutting-edge, Enhancers and Promoters: Methods and Protocols is a useful guide for future experiments. Chapters 4 and 11 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com