IUBMB Focused Meeting on Extremophilic Fungi


Book Description

Nowadays we know that most environments that in the past were considered to be too extreme to be populated by any living form, can harbour life. Initially the prevailing conviction was that only prokaryotic cells, Bacteria and Archaea, are able to sustain the most extreme conditions and that eukaryotic cells, in particular fungi, are too complex to survive under such harsh conditions. In recent decades, however, fungi have been found to be an integral part of extreme microbial communities. Unlike their prokaryotic counterparts most fungi adapt to a wide range of an extreme condition, e.g. from no salt to saturation with salt, from low to high pH. They display a typical fungal strategy in adaptations - extremotolerance or even poly-extremotolerance - rather than extremophily. Extremotolerant fungi can be so adapted to multiple environments that they perceive a broad range of extreme conditions as optimal for their growth. Who are these fungi? Where can we find them? How did they evolve and how do they survive in some of the most extraordinary conditions we find on our planet? Which unique solutions to universal problems of adaptations they have evolved in comparison with prokaryotes? Can we use them in practical applications? Do they adapt to global climate change? Can they give us some astrobiological answers?These are going to be the main questions that will be addressed at the first conference on extremophilic fungi that will bring together many world-renowned experts, young scientists, and students. Hopefully this first-time event will help usher mycology in the next era of extreme mycology and become a traditional event in the years to come.




Fungal Ecology


Book Description

Fungi play vital roles in all ecosystems, as decomposers, symbionts of animals and plants and as parasites. Thus their ecology is of great interest. It has been estimated that there may be as many as 1. 5 million species of fungi, many of which are still undescribed. These interact in various ways with their hosts, with their substrates, with their competitors (including other fungi) and with abiotic variables of their environment. They show great variation in morphology, reproduction, life cycles and modes of dispersal. They grow in almost every conceivable habitat where organic carbon is available: on rock surfaces, in soil, the sea and in fresh water, at extremes of high and low temperature, on dry substrata and in concen trated solutions. Fungal ecology is therefore an enormous subject and its literature is voluminous. In view of this we have had to be selective in the material we have included in this book. We have chosen to concentrate on subjects in which we have some personal experience through either research or teaching. We preferred to tackle a few subjects in depth instead of attempting to cover a wider range of topics superficially. We are conscious of the extensive gaps in coverage: for example on the ecology of lichens, of fungal plant pathogens and of the complex interactions between fungi and animals. It is some justification that book-length treatments of these subjects are available elsewhere.




Algal Adaptation to Environmental Stresses


Book Description

Algae, generally held as the principal primary producers of aquatic systems, inhabit all conceivable habitats. They have great ability to cope with a harsh environment, e.g. extremely high and low temperatures, suboptimal and supraoptimal light intensities, low availability of essential nutrients and other resources, and high concentrations of toxic chemicals, etc. A multitude of physiological, biochemical, and molecular strategies enable them to survive and grow in stressful habitats. This book presents a critical account of various mechanisms of stress tolerance in algae, many of which may occur in microbes and plants as well.




Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications


Book Description

This book explores various aspects of thermophilic and halophilic microbes from Eurasian ecosystems, which have proved to offer a unique reservoir of genetic diversity and biological source of extremophiles. It also covers the biotechnological uses of extremophiles, and their potential use in agricultural and industrial applications. The topics addressed include but are not limited to: diversity and microbial ecology, microbe-environment interactions, adaptation and evolution, element cycling and biotechnological applications of thermophiles and halophiles in Eurasian ecosystems. In order to review the progress made in biology and biotechnological applications of thermophiles and halophiles, the book combines review papers and results of original research from various specialists and authorities in the field. It includes several chapters describing the microbial diversity and ecology of geothermal springs distributed among the territory of various Eurasian countries, such as Armenia, Bulgaria, China, Georgia, India, Italy, Pakistan and Turkey. A dedicated chapter discusses selected aspects of thermophilic chemolithotrophic bacteria isolated from mining sites (sulfide ores); detailed descriptions of various thermophile microbes isolated from high-temperature environments and their biotechnological potential are also provided. Subsequent chapters describe the diversity and ecology of halophilic microbes harbored in saline and hypersaline lakes in Iran, Turkey and China; soil and plant microbiomes in saline arid lands of Uzbekistan; microbial diversity in Asian deserts; and the potential applications of thermophilic and halophilic microbes as exopolysaccharide (EPS) producers, focusing on the chemistry and applications of the EPS they produce. We hope that this book will prove valuable as an up-to-date overview of the current state of research on Eurasian extremophiles in general and thermophiles and halophiles in particular. Many questions remain unanswered, and we hope that it will stimulate further studies in this intriguing and promising field.




Microbial Sulfur Metabolism


Book Description

This revealing book details recent developments in the study of the relationship between sulfur and the microbial agents that affect its metabolism. In recent years, new methods have been applied to study the biochemistry and molecular biology of reactions of the global sulfur cycle, the microorganisms involved and their physiology, metabolism and ecology. These activities have uncovered fascinating new insights for the understanding of aerobic and anaerobic sulfur metabolism.




Fungal Metabolites


Book Description




Enzymes in Food Technology


Book Description

The integration of enzymes in food processing is well known, and dedicated research is continually being pursued to address the global food crisis. This book provides a broad, up-to-date overview of the enzymes used in food technology. It discusses microbial, plant and animal enzymes in the context of their applications in the food sector; process of immobilization; thermal and operational stability; increased product specificity and specific activity; enzyme engineering; implementation of high-throughput techniques; screening of relatively unexplored environments; and development of more efficient enzymes. Offering a comprehensive reference resource on the most progressive field of food technology, this book is of interest to professionals, scientists and academics in the food and biotech industries.




Green Bio-processes


Book Description

This volume discusses recent advancements to the age old practice of using microbial enzymes in the preparation of food. Written by leading experts in the field, it discusses novel enzymes and their applications in the industrial preparation of food to improve taste and texture, while reducing cost and increasing consistency. This book will be of interest to both researchers and students working in food technology.




Enzymes in Food Technology


Book Description

The second edition of this successful book highlights the widespread use of enzymes in food processing improvement and innovation, explaining how they bring advantages. The properties of different enzymes are linked to the physical and biochemical events that they influence in food materials and products, while these in turn are related to the key organoleptic, sensory and shelf life qualities of foods. Fully updated to reflect advances made in the field over recent years, the book also contains five new chapters.




Microbial Enzymes: Roles and Applications in Industries


Book Description

“Microbial Enzymes: Roles and applications in industry” offers an essential update on the field of microbial biotechnology, and presents the latest information on a range of microbial enzymes such as fructosyltransferase, laccases, amylases, lipase, and cholesterol oxidase, as well as their potential applications in various industries. Production and optimisation technologies for several industrially relevant microbial enzymes are also addressed. In recent years, genetic engineering has opened up new possibilities for redesigning microbial enzymes that are useful in multiple industries, an aspect that the book explores. In addition, it demonstrates how some of the emerging issues in the fields of agriculture, environment and human health can be resolved with the aid of green technologies based on microbial enzymes. The topics covered here will not only provide a better understanding of the commercial applications of microbial enzymes, but also outline futuristic approaches to use microbial enzymes as driver of industrial sustainability. Lastly, the book is intended to provide readers with an overview of recent applications of microbial enzymes in various industrial sectors, and to pique researchers’ interest in the development of novel microbial enzyme technologies to meet the changing needs of industry.