The Kinetics and Mechanism of Oxidation of Isopropanol with the Hydrogen Peroxide-vanadate Ion-pyrazine-2-carboxylic Acid System


Book Description

The vanadate anion in the presence of pyrazine-2-carboxylic acid (PCA) was found to effectively catalyze the oxidation of isopropanol to acetone with hydrogen peroxide. The electronic spectra of solutions and the kinetics of oxidation were studied. The conclusion was drawn that the rate-determining stage of the reaction was the decomposition of the vanadium(V) diperoxo complex with PCA, and the particle that induced the oxidation of isopropanol was the hydroxyl radical. Supposedly, the HO• radical detached a hydrogen atom from isopropanol, and the Me2 C• (OH) radical formed reacted with HOO• to produce acetone and hydrogen peroxide. The electronic spectra of solutions in isopropanol and acetonitrile and the dependences of the initial rates of isopropanol oxidation without a solvent and cyclohexane oxidation in acetonitrile on the initial concentration of hydrogen peroxide were compared. The conclusion was drawn that hydroxyl radicals appeared in the oxidation of alkanes in acetonitrile in the decomposition of the vanadium diperoxo complex rather than the monoperoxo derivative, as was suggested by us earlier.




Induced Oxidation


Book Description










Kinetics and Mechanisms of the Oxidation of Alcohols and Hydroxylamines by Hydrogen Peroxide, Catalyzed by Methyltrioxorhenium, MTO, and the Oxygen Binding Properties of Cobalt Schiff Base Complexes


Book Description

Catalysis is a very interesting area of chemistry, which is currently developing at a rapid pace. A great deal of effort is being put forth by both industry and academia to make reactions faster and more productive. One method of accomplishing this is by the development of catalysts. Enzymes are an example of catalysts that are able to perform reactions on a very rapid time scale and also very specifically; a goal for every man-made catalyst. A kinetic study can also be carried out for a reaction to gain a better understanding of its mechanism and to determine what type of catalyst would assist the reaction. Kinetic studies can also help determine other factors, such as the shelf life of a chemical, or the optimum temperature for an industrial scale reaction. An area of catalysis being studied at this time is that of oxygenations. Life on this earth depends on the kinetic barriers for oxygen in its various forms. If it were not for these barriers, molecular oxygen, water, and the oxygenated materials in the land would be in a constant equilibrium. These same barriers must be overcome when performing oxygenation reactions on the laboratory or industrial scale. By performing kinetic studies and developing catalysts for these reactions, a large number of reactions can be made more economical, while making less unwanted byproducts. For this dissertation the activation by transition metal complexes of hydrogen peroxide or molecular oxygen coordination will be discussed.










Organic Reactions


Book Description

Hardbound. This book begins with a brief survey of non-kinetic methods, and continues with kinetic methods used for the elucidation of reaction mechanisms. It is method oriented and therefore deals with the following topics: basic principles of reaction kinetics; Structure and reactivity relationships; isotope effects; acids, bases, electrophiles and nucleophiles; and concludes with homogeneous catalysis.Rigorous mathematical descriptions of the basic principles are provided in a clear and easily understandable form. The book is more comprehensive than many physical organic texts and it is supported by an extensive list of references. It also contains a valuable collection of problems.