Size, Dynamics and Consequences of Large-scale Horizontal Coherent Structures in Open-channel Flows


Book Description

This thesis concerns the occurrence of the large-scale bed and plan forms known as alternate bars and meandering, and the internal structures of the flow associated with their formation. The work is to be viewed as an extension of previous work by da Silva (1991), Yalin (1992), and Yalin and da Silva (2001). As a first step in this work, the criteria for occurrence of alternate bars and meandering of Yalin and da Silva (2001) is re-considered in view of additional field and laboratory data from the recent literature and data resulting from two series of experimental runs carried out in two sediment transport flumes. This leads to a number of modifications of the boundary-lines in the related existence-region diagram of Yalin and da Silva. The size of the largest horizontal coherent structures (HCS's) of an alternate bar inducing flow was then investigated experimentally on the basis of three series of flow velocity measurements. These were carried out in a 21m-long, 1m-wide straight channel, conveying a 4cm-deep flow. The bed consisted of a silica sand having a grain size of 2mm; its surface was flat. The measurements were carried out using a Sontek 2D Micro ADV. The horizontal burst length was found to be between five and seven times the flow width. The effect of the HCS's on the mean flow was also investigated. A slight internal meandering of the flow caused by the superimposition of burst-sequences on the mean flow was clearly detectable. Finally, with the aid of three new series of measurements in the same channel, an attempt was made to penetrate the dynamics and life-cycle of the HCS's. For this purpose, quadrant analysis was used; the cross-sectional distribution of relevant statistical turbulence-related parameters was investigated; and cross-correlations of flow velocity along the flow depth and across the channel were performed. The analysis indicates that the HCS's originate near the channel banks, with the location of ejections and sweeps being anti-symmetrically arranged with regard to the channel centreline, and then evolve so as to occupy the entire depth of the water and the entire width of the channel.




Free Surface Flows and Transport Processes


Book Description

This book contains the written, thoroughly reviewed versions of both invited lectures and regular presentations given at the 36th International School of Hydraulics, held at Jachranka in Poland on May 23–26, 2017. The contributions cover recent findings in the areas of mathematical modeling as well as experimental investigations related to free surface flows and pollution, sediment and heat transport processes in rivers. Better understanding of environmental flows requires cognition of physical, chemical and biological attributes of flowing water and therefore hydraulic research becomes strongly interdisciplinary field of science. The authors also realize that fundamental knowledge of environmental hydraulics problems is absolutely essential for planning and design of systems to manage water resources. Nowadays the readers face a rapid development of hydraulic research due to a boom in the computer sciences and measurement techniques and this is what this book is about. Eminent world leading experts in this field and young researchers from sixteen countries from all over the world contributed to this book.










Large-Scale Simulation


Book Description

Large-Scale Simulation: Models, Algorithms, and Applications gives you firsthand insight on the latest advances in large-scale simulation techniques. Most of the research results are drawn from the authors’ papers in top-tier, peer-reviewed, scientific conference proceedings and journals. The first part of the book presents the fundamentals of large-scale simulation, including high-level architecture and runtime infrastructure. The second part covers middleware and software architecture for large-scale simulations, such as decoupled federate architecture, fault tolerant mechanisms, grid-enabled simulation, and federation communities. In the third part, the authors explore mechanisms—such as simulation cloning methods and algorithms—that support quick evaluation of alternative scenarios. The final part describes how distributed computing technologies and many-core architecture are used to study social phenomena. Reflecting the latest research in the field, this book guides you in using and further researching advanced models and algorithms for large-scale distributed simulation. These simulation tools will help you gain insight into large-scale systems across many disciplines.




Turbulence in Open Channel Flows


Book Description

A review of open channel turbulence, focusing especially on certain features stemming from the presence of the free surface and the bed of a river. Part one presents the statistical theory of turbulence; Part two addresses the coherent structures in open-channel flows and boundary layers.




Shallow Flows


Book Description

This text presents the key findings of the International Symposium held in Delft in 2003, which explored the process of shallow flows. Shallow flows are found in lowland rivers, lakes, estuaries, bays, coastal areas and in density-stratified atmospheres, and may be observed in puddles, as in oceans. They impact on the life and work of a w




Hydraulic Modeling


Book Description




Turbulence in Open Channel Flows


Book Description

A review of open channel turbulence, focusing especially on certain features stemming from the presence of the free surface and the bed of a river. Part one presents the statistical theory of turbulence; Part two addresses the coherent structures in open-channel flows and boundary layers.