Online Optimization of Large Scale Systems


Book Description

In its thousands of years of history, mathematics has made an extraordinary ca reer. It started from rules for bookkeeping and computation of areas to become the language of science. Its potential for decision support was fully recognized in the twentieth century only, vitally aided by the evolution of computing and communi cation technology. Mathematical optimization, in particular, has developed into a powerful machinery to help planners. Whether costs are to be reduced, profits to be maximized, or scarce resources to be used wisely, optimization methods are available to guide decision making. Opti mization is particularly strong if precise models of real phenomena and data of high quality are at hand - often yielding reliable automated control and decision proce dures. But what, if the models are soft and not all data are around? Can mathematics help as well? This book addresses such issues, e. g. , problems of the following type: - An elevator cannot know all transportation requests in advance. In which order should it serve the passengers? - Wing profiles of aircrafts influence the fuel consumption. Is it possible to con tinuously adapt the shape of a wing during the flight under rapidly changing conditions? - Robots are designed to accomplish specific tasks as efficiently as possible. But what if a robot navigates in an unknown environment? - Energy demand changes quickly and is not easily predictable over time. Some types of power plants can only react slowly.













Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences


Book Description

This book contains state-of-the-art contributions in the field of evolutionary and deterministic methods for design, optimization and control in engineering and sciences. Specialists have written each of the 34 chapters as extended versions of selected papers presented at the International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN 2013). The conference was one of the Thematic Conferences of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Topics treated in the various chapters are classified in the following sections: theoretical and numerical methods and tools for optimization (theoretical methods and tools; numerical methods and tools) and engineering design and societal applications (turbo machinery; structures, materials and civil engineering; aeronautics and astronautics; societal applications; electrical and electronics applications), focused particularly on intelligent systems for multidisciplinary design optimization (mdo) problems based on multi-hybridized software, adjoint-based and one-shot methods, uncertainty quantification and optimization, multidisciplinary design optimization, applications of game theory to industrial optimization problems, applications in structural and civil engineering optimum design and surrogate models based optimization methods in aerodynamic design.




Approximation of Large-Scale Dynamical Systems


Book Description

Mathematical models are used to simulate, and sometimes control, the behavior of physical and artificial processes such as the weather and very large-scale integration (VLSI) circuits. The increasing need for accuracy has led to the development of highly complex models. However, in the presence of limited computational accuracy and storage capabilities model reduction (system approximation) is often necessary. Approximation of Large-Scale Dynamical Systems provides a comprehensive picture of model reduction, combining system theory with numerical linear algebra and computational considerations. It addresses the issue of model reduction and the resulting trade-offs between accuracy and complexity. Special attention is given to numerical aspects, simulation questions, and practical applications.




Large-Scale Scientific Computing


Book Description

The 7th International Conference on Large-Scale Scienti?c Computations (LSSC 2009) was held in Sozopol, Bulgaria, June 4–8, 2009. The conference was organized and sponsored by the Institute for Parallel Processing at the B- garian Academy of Sciences. The conference was devoted to the 70th birthday anniversary of Professor Zahari Zlatev. The Bulgarian Academy of Sciences awarded him the Marin Drinov medal on ribbon for his outstanding results in environmental mat- matics and for his contributions to the Bulgarian mathematical society and the Academy of Sciences. The plenary invited speakers and lectures were: – P. Arbenz, “?Finite Element Analysis of Human Bone Structures” – Y. Efendiev, “Mixed Multiscale Finite Element Methods Using Limited Global Information” – U. Langer, “Fast Solvers for Non-Linear Time-Harmonic Problems” – T. Manteu?el, “First-Order System Least-Squares Approach to Resistive Magnetohydrodynamic Equations” – K. Sabelfeld, “Stochastic Simulation for Solving Random Boundary Value Problems and Some Applications” – F. Tro ¨ltzsch,“OnFinite ElementErrorEstimatesforOptimalControlPr- lems with Elliptic PDEs” – Z. Zlatev, “On Some Stability Properties of the Richardson Extrapolation Applied Together with the ?-method” The success of the conference and the present volume in particular are an outcome of the joint e?orts of many partnersfrom various institutions and or- nizations. Firstwe wouldlike to thank allthe membersofthe Scienti?c Comm- tee for their valuable contribution forming the scienti?c face of the conference, as well as for their help in reviewing contributed papers. We especially thank the organizers of the special sessions.




New Trends in Shape Optimization


Book Description

This volume reflects “New Trends in Shape Optimization” and is based on a workshop of the same name organized at the Friedrich-Alexander University Erlangen-Nürnberg in September 2013. During the workshop senior mathematicians and young scientists alike presented their latest findings. The format of the meeting allowed fruitful discussions on challenging open problems, and triggered a number of new and spontaneous collaborations. As such, the idea was born to produce this book, each chapter of which was written by a workshop participant, often with a collaborator. The content of the individual chapters ranges from survey papers to original articles; some focus on the topics discussed at the Workshop, while others involve arguments outside its scope but which are no less relevant for the field today. As such, the book offers readers a balanced introduction to the emerging field of shape optimization.