Logic Testing and Design for Testability


Book Description

Design for testability techniques offer one approach toward alleviating this situation by adding enough extra circuitry to a circuit or chip to reduce the complexity of testing. Today's computers must perform with increasing reliability, which in turn depends on the problem of determining whether a circuit has been manufactured properly or behaves correctly. However, the greater circuit density of VLSI circuits and systems has made testing more difficult and costly. This book notes that one solution is to develop faster and more efficient algorithms to generate test patterns or use design techniques to enhance testability - that is, design for testability. Design for testability techniques offer one approach toward alleviating this situation by adding enough extra circuitry to a circuit or chip to reduce the complexity of testing. Because the cost of hardware is decreasing as the cost of testing rises, there is now a growing interest in these techniques for VLSI circuits.The first half of the book focuses on the problem of testing: test generation, fault simulation, and complexity of testing. The second half takes up the problem of design for testability: design techniques to minimize test application and/or test generation cost, scan design for sequential logic circuits, compact testing, built-in testing, and various design techniques for testable systems. Logic Testing and Design for Testability is included in the Computer Systems Series, edited by Herb Schwetman.




Logic Testing and Design for Testability


Book Description

Today's computers must perform with increasing reliability, which in turn depends onthe problem of determining whether a circuit has been manufactured properly or behaves correctly.However, the greater circuit density of VLSI circuits and systems has made testing more difficultand costly. This book notes that one solution is to develop faster and more efficient algorithms togenerate test patterns or use design techniques to enhance testability - that is, "design fortestability." Design for testability techniques offer one approach toward alleviating this situationby adding enough extra circuitry to a circuit or chip to reduce the complexity of testing. Becausethe cost of hardware is decreasing as the cost of testing rises, there is now a growing interest inthese techniques for VLSI circuits.The first half of the book focuses on the problem of testing:test generation, fault simulation, and complexity of testing. The second half takes up the problemof design for testability: design techniques to minimize test application and/or test generationcost, scan design for sequential logic circuits, compact testing, built-in testing, and variousdesign techniques for testable systems.Hideo Fujiwara is an associate professor in the Department ofElectronics and Communication, Meiji University. Logic Testing and Design for Testability isincluded in the Computer Systems Series, edited by Herb Schwetman.




VLSI Test Principles and Architectures


Book Description

This book is a comprehensive guide to new DFT methods that will show the readers how to design a testable and quality product, drive down test cost, improve product quality and yield, and speed up time-to-market and time-to-volume. Most up-to-date coverage of design for testability. Coverage of industry practices commonly found in commercial DFT tools but not discussed in other books. Numerous, practical examples in each chapter illustrating basic VLSI test principles and DFT architectures.




An Introduction to Logic Circuit Testing


Book Description

An Introduction to Logic Circuit Testing provides a detailed coverage of techniques for test generation and testable design of digital electronic circuits/systems. The material covered in the book should be sufficient for a course, or part of a course, in digital circuit testing for senior-level undergraduate and first-year graduate students in Electrical Engineering and Computer Science. The book will also be a valuable resource for engineers working in the industry. This book has four chapters. Chapter 1 deals with various types of faults that may occur in very large scale integration (VLSI)-based digital circuits. Chapter 2 introduces the major concepts of all test generation techniques such as redundancy, fault coverage, sensitization, and backtracking. Chapter 3 introduces the key concepts of testability, followed by some ad hoc design-for-testability rules that can be used to enhance testability of combinational circuits. Chapter 4 deals with test generation and response evaluation techniques used in BIST (built-in self-test) schemes for VLSI chips. Table of Contents: Introduction / Fault Detection in Logic Circuits / Design for Testability / Built-in Self-Test / References







Digital Systems Testing and Testable Design


Book Description

This updated printing of the leading text and reference in digital systems testing and testable design provides comprehensive, state-of-the-art coverage of the field. Included are extensive discussions of test generation, fault modeling for classic and new technologies, simulation, fault simulation, design for testability, built-in self-test, and diagnosis. Complete with numerous problems, this book is a must-have for test engineers, ASIC and system designers, and CAD developers, and advanced engineering students will find this book an invaluable tool to keep current with recent changes in the field.




System-on-Chip Test Architectures


Book Description

Modern electronics testing has a legacy of more than 40 years. The introduction of new technologies, especially nanometer technologies with 90nm or smaller geometry, has allowed the semiconductor industry to keep pace with the increased performance-capacity demands from consumers. As a result, semiconductor test costs have been growing steadily and typically amount to 40% of today's overall product cost. This book is a comprehensive guide to new VLSI Testing and Design-for-Testability techniques that will allow students, researchers, DFT practitioners, and VLSI designers to master quickly System-on-Chip Test architectures, for test debug and diagnosis of digital, memory, and analog/mixed-signal designs. Emphasizes VLSI Test principles and Design for Testability architectures, with numerous illustrations/examples. Most up-to-date coverage available, including Fault Tolerance, Low-Power Testing, Defect and Error Tolerance, Network-on-Chip (NOC) Testing, Software-Based Self-Testing, FPGA Testing, MEMS Testing, and System-In-Package (SIP) Testing, which are not yet available in any testing book. Covers the entire spectrum of VLSI testing and DFT architectures, from digital and analog, to memory circuits, and fault diagnosis and self-repair from digital to memory circuits. Discusses future nanotechnology test trends and challenges facing the nanometer design era; promising nanotechnology test techniques, including Quantum-Dots, Cellular Automata, Carbon-Nanotubes, and Hybrid Semiconductor/Nanowire/Molecular Computing. Practical problems at the end of each chapter for students.




Advanced VLSI Design and Testability Issues


Book Description

This book facilitates the VLSI-interested individuals with not only in-depth knowledge, but also the broad aspects of it by explaining its applications in different fields, including image processing and biomedical. The deep understanding of basic concepts gives you the power to develop a new application aspect, which is very well taken care of in this book by using simple language in explaining the concepts. In the VLSI world, the importance of hardware description languages cannot be ignored, as the designing of such dense and complex circuits is not possible without them. Both Verilog and VHDL languages are used here for designing. The current needs of high-performance integrated circuits (ICs) including low power devices and new emerging materials, which can play a very important role in achieving new functionalities, are the most interesting part of the book. The testing of VLSI circuits becomes more crucial than the designing of the circuits in this nanometer technology era. The role of fault simulation algorithms is very well explained, and its implementation using Verilog is the key aspect of this book. This book is well organized into 20 chapters. Chapter 1 emphasizes on uses of FPGA on various image processing and biomedical applications. Then, the descriptions enlighten the basic understanding of digital design from the perspective of HDL in Chapters 2–5. The performance enhancement with alternate material or geometry for silicon-based FET designs is focused in Chapters 6 and 7. Chapters 8 and 9 describe the study of bimolecular interactions with biosensing FETs. Chapters 10–13 deal with advanced FET structures available in various shapes, materials such as nanowire, HFET, and their comparison in terms of device performance metrics calculation. Chapters 14–18 describe different application-specific VLSI design techniques and challenges for analog and digital circuit designs. Chapter 19 explains the VLSI testability issues with the description of simulation and its categorization into logic and fault simulation for test pattern generation using Verilog HDL. Chapter 20 deals with a secured VLSI design with hardware obfuscation by hiding the IC’s structure and function, which makes it much more difficult to reverse engineer.




VLSI Fault Modeling and Testing Techniques


Book Description

VLSI systems are becoming very complex and difficult to test. Traditional stuck-at fault problems may be inadequate to model possible manufacturing defects in the integrated ciruit. Hierarchial models are needed that are easy to use at the transistor and functional levels. Stuck-open faults present severe testing problems in CMOS circuits, to overcome testing problems testable designs are utilized. Bridging faults are important due to the shrinking geometry of ICs. BIST PLA schemes have common features-controllability and observability - which are enhanced through additional logic and test points. Certain circuit topologies are more easily testable than others. The amount of reconvergent fan-out is a critical factor in determining realistic measures for determining test generation difficulty. Test implementation is usually left until after the VLSI data path has been synthesized into a structural description. This leads to investigation methodologies for performing design synthesis with test incorporation. These topics and more are discussed.




Digital Logic Testing and Simulation


Book Description

The new standard in the field, presenting the latest design and testing methods for logic circuits, and the development of a BASIC-based simulation. Offers designers and test engineers unique coverage of circuit design for testability, stressing the incorporation of hardware into designs that facilitate testing and diagnosis by allowing greater access to internal circuits. Examines various ways of representing a design, as well as external testing methods that apply this information.