Machine Learning for Vision-Based Motion Analysis


Book Description

Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition. Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions. Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets. Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval.




Machine Learning for Human Motion Analysis: Theory and Practice


Book Description

"This book highlights the development of robust and effective vision-based motion understanding systems, addressing specific vision applications such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval"--Provided by publisher.







Human Motion Sensing and Recognition


Book Description

This book introduces readers to the latest exciting advances in human motion sensing and recognition, from the theoretical development of fuzzy approaches to their applications. The topics covered include human motion recognition in 2D and 3D, hand motion analysis with contact sensors, and vision-based view-invariant motion recognition, especially from the perspective of Fuzzy Qualitative techniques. With the rapid development of technologies in microelectronics, computers, networks, and robotics over the last decade, increasing attention has been focused on human motion sensing and recognition in many emerging and active disciplines where human motions need to be automatically tracked, analyzed or understood, such as smart surveillance, intelligent human-computer interaction, robot motion learning, and interactive gaming. Current challenges mainly stem from the dynamic environment, data multi-modality, uncertain sensory information, and real-time issues. These techniques are shown to effectively address the above challenges by bridging the gap between symbolic cognitive functions and numerical sensing & control tasks in intelligent systems. The book not only serves as a valuable reference source for researchers and professionals in the fields of computer vision and robotics, but will also benefit practitioners and graduates/postgraduates seeking advanced information on fuzzy techniques and their applications in motion analysis.










Motion Analysis and Image Sequence Processing


Book Description

An image or video sequence is a series of two-dimensional (2-D) images sequen tially ordered in time. Image sequences can be acquired, for instance, by video, motion picture, X-ray, or acoustic cameras, or they can be synthetically gen erated by sequentially ordering 2-D still images as in computer graphics and animation. The use of image sequences in areas such as entertainment, visual communications, multimedia, education, medicine, surveillance, remote control, and scientific research is constantly growing as the use of television and video systems are becoming more and more common. The boosted interest in digital video for both consumer and professional products, along with the availability of fast processors and memory at reasonable costs, has been a major driving force behind this growth. Before we elaborate on the two major terms that appear in the title of this book, namely motion analysis and image sequence processing, we like to place them in their proper contexts within the range of possible operations that involve image sequences. In this book, we choose to classify these operations into three major categories, namely (i) image sequence processing, (ii) image sequence analysis, and (iii) visualization. The interrelationship among these three categories is pictorially described in Figure 1 below in the form of an "image sequence triangle".




Computational Analysis of Visual Motion


Book Description

Image motion processing is important to machine vision systems because it can lead to the recovery of 3D structure and motion. Author Amar Mitiche offers a comprehensive mathematical treatment of this key subject in visual systems research. Mitiche examines the interpretation of point correspondences as well as the interpretation of straight line correspondences and optical flow. In addition, the author considers interpretation by knowledge-based systems and presents the relevant mathematical basis for 3D interpretation.




Computer Vision in Sports


Book Description

The first book of its kind devoted to this topic, this comprehensive text/reference presents state-of-the-art research and reviews current challenges in the application of computer vision to problems in sports. Opening with a detailed introduction to the use of computer vision across the entire life-cycle of a sports event, the text then progresses to examine cutting-edge techniques for tracking the ball, obtaining the whereabouts and pose of the players, and identifying the sport being played from video footage. The work concludes by investigating a selection of systems for the automatic analysis and classification of sports play. The insights provided by this pioneering collection will be of great interest to researchers and practitioners involved in computer vision, sports analysis and media production.




Social Robotics


Book Description

This book constitutes the refereed proceedings of the 4th International Conference on Social Robotics, ICSR 2012, held in Chengdu, China, in October 2012. The 66 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on affective and cognitive sciences for socially interactive robots, situated interaction and embodiment, robots to assist the elderly and persons with disabilities, social acceptance of robots and their impact to the society, artificial empathy, HRI through non-verbal communication and control, social telepresence robots, embodiments and networks, interaction and collaboration among robots, humans and environment, human augmentation, rehabilitation, and medical robots I and II.