Materials Science, Mechanical Structures and Engineering


Book Description

Collection of selected, peer reviewed papers from the 2014 2nd International Conference on Mechanical Structures and Smart Materials (2nd ICMSSM 2014), August 16-17, 2014, Kuala Lumpur, Malaysia. The 120 papers are grouped as follows: Chapter 1: Materials Science, Chapter 2: Material Properties and Processing Technologies, Chapter 3: Applied Mechanic and Engineering Design, Chapter 4: Mechanical Engineering and Control Systems, Chapter 5: Researches of Transmission Line Construction, Chapter 6: Civil Engineering and Information Technologies.




Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications


Book Description

The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase its applications across different industries. Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications is a compendium of the latest academic material on investigations, technologies, and techniques pertaining to analyzing the synthesis and design of new materials. Through its broad and extensive coverage on a variety of crucial topics, such as nanomaterials, biomaterials, and relevant computational methods, this multi-volume work is an essential reference source for engineers, academics, researchers, students, professionals, and practitioners seeking innovative perspectives in the field of materials science and engineering.




Engineering Materials Science


Book Description

This introductory text is intended to provide undergraduate engineering students with the background needed to understand the science of structure-property relationships, as well as address the engineering concerns of materials selection in design. A computer diskette is included.




Mechanics of Materials For Dummies


Book Description

Your ticket to excelling in mechanics of materials With roots in physics and mathematics, engineering mechanics is the basis of all the mechanical sciences: civil engineering, materials science and engineering, mechanical engineering, and aeronautical and aerospace engineering. Tracking a typical undergraduate course, Mechanics of Materials For Dummies gives you a thorough introduction to this foundational subject. You'll get clear, plain-English explanations of all the topics covered, including principles of equilibrium, geometric compatibility, and material behavior; stress and its relation to force and movement; strain and its relation to displacement; elasticity and plasticity; fatigue and fracture; failure modes; application to simple engineering structures, and more. Tracks to a course that is a prerequisite for most engineering majors Covers key mechanics concepts, summaries of useful equations, and helpful tips From geometric principles to solving complex equations, Mechanics of Materials For Dummies is an invaluable resource for engineering students!




Materials for Engineering


Book Description

This third edition of what has become a modern classic presents a lively overview of Materials Science which is ideal for students of Structural Engineering. It contains chapters on the structure of engineering materials, the determination of mechanical properties, metals and alloys, glasses and ceramics, organic polymeric materials and composite materials. It contains a section with thought-provoking questions as well as a series of useful appendices. Tabulated data in the body of the text, and the appendices, have been selected to increase the value of Materials for engineering as a permanent source of reference to readers throughout their professional lives. The second edition was awarded Choice’s Outstanding Academic Title award in 2003. This third edition includes new information on emerging topics and updated reading lists.




Fracture of Engineering Materials and Structures


Book Description

Recent advances in the field of fracture of engineering materials and structures have increasingly indicated its multidisciplinary nature. This area of research now involves scientists and engineers who work in materials science, applied mathematics and mechanics, and also computer scientists. The present volume, which contains the Proceedings of the Joint FEFG/lCF International Conference on Fracture of Engineering Materials and Structures held in Singapore from the 6th to 8th of August 1991, is a testimony of this multidisciplinary nature. This International Conference was the Second Symposium of the Far East Fracture Group (FEFG) and thus provided a unique opportunity for researchers and engineers in the Far East region to exchange and acquire knowledge of new advances and applications in fracture. The Conference was also the Inter-Quadrennial International Conference on Fracture (ICF) for 1991 and thus appealed to researchers in the international arena who wished to take advantage of this meeting to present their findings. The Conference has brought together over 130 participants from more than 24 countries, and they represented government and industrial research laboratories as well as academic institutions. It has thus achieved its objective of bringing together scientists and engineers with different backgrounds and perspectives but with . a common interest in new developments in the fracture of engineering materials and structures. This volume contains 4 keynote papers, 4 invited papers and 130 contributed papers.




Materials for Engineering


Book Description

This new edition of what has become a modern classic presents a lively overview of Materials Science which is ideal for students of Structural Engineering. It contains chapters on the structure of engineering materials, the determination of mechanical properties, metals and alloys, glasses and ceramics, organic polymeric materials and composite materials. It contains a section with thought-provoking questions as well as a series of useful appendices. Tabulated data in the body of the text, and the appendices, have been selected to increase the value of the book as a permanent source of reference to readers throughout their professional lives.




Materials with Internal Structure


Book Description

The book presents a series of concise papers by researchers specialized in various fields of continuum and computational mechanics and of material science. The focus is on principles and strategies for multiscale modeling and simulation of complex heterogeneous materials, with periodic or random microstructure, subjected to various types of mechanical, thermal, chemical loadings and environmental effects. A wide overview of complex behavior of materials (plasticity, damage, fracture, growth, etc.) is provided. Among various approaches, attention is given to advanced non-classical continua modeling which, provided by constitutive characterization for the internal and external actions (in particular boundary conditions), is a very powerful frame for the gross mechanical description of complex material behaviors, able to circumvent the restrictions of classical coarse–graining multiscale approaches.




Advanced Civil Infrastructure Materials


Book Description

In recent decades, material development in response to a call for more durable infrastructures has led to many exciting advancements. Fiber reinforced composite designs, with very unique properties, are now being explored in many infrastructural applications. Even concrete and steel are being steadily improved to have better properties and durability. Advanced civil infrastructure materials provides an up-to-date review of several emerging construction materials that may have a significant impact on repairs of existing infrastructures and/or new constructions. Each chapter explores the ‘materials design concept’ which leads to the creation of advanced composites by synergistically combining two or more constituents. Such design methodology is made possible by several key advancements in materials science and mechanics. Each chapter is concluded with selective examples of real world applications using these advanced materials. This includes relevant structural design guidelines and mechanics to assist readers in comprehending the uses of these advanced materials. The contributors are made up of renowned authors who are recognized for their expertise in their chosen field. Advanced civil infrastructure materials is of value to both graduate and undergraduate students of civil engineering, and will serve as a useful reference guide for researchers and practitioners in the construction industry. A valuable reference for researchers and practitioners in the construction industry Essential reading for graduate and undergraduate students of civil engineering Written by an expert pannel




MATERIALS SCIENCE AND ENGINEERING -Volume III


Book Description

Materials Science and Engineering theme is a component of Encyclopedia of Physical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Materials Science and Engineering is concerned with the development and selection of the best possible material for a particular engineering task and the determination of the most effective method of producing the materials and the component. The Theme with contributions from distinguished experts in the field, discusses Materials Science and Engineering. In this theme the history of materials is traced and the concept of structure (atomic structure, microstructure and defect structure) and its relationship to properties developed. The theme is structured in five main topics: Materials Science and Engineering; Optimization of Materials Properties; Structural and Functional Materials; Materials Processing and Manufacturing Technologies; Detection of Defects and Assessment of Serviceability; Materials of the Future, which are then expanded into multiple subtopics, each as a chapter. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs