Mechanistic Studies of Cu-catalyzed Aerobic Oxidation Reactions


Book Description

Chemical copper-catalyzed aerobic oxidation reactions exhibit complexities not present in similar oxidation reactions employing noble metal catalysts with traditional chemical oxidants like hypervalent iodines or peroxides. The oxidation of organic molecules involves the removal of two protons and two electrons. This inevitably requires two CuII catalyst molecules to participate in the net oxidation reaction due to the one-electron redox-state changes typically associated with Cu. Additionally, CuI must react with molecular oxygen, a ground-state triplet molecule and net four-electron oxidant, to regenerate the active CuII catalyst. Aspects of these complexities are addressed in this thesis. Nature has evolved to use Cu catalysts (often together with redox-active organic cocatalysts) to perform oxidation reactions that use O2 as the terminal oxidant. The oxidation of CuI by O2 has been the subject of extensive investigation over the past several decades, and many of these studies were inspired by enzyme active sites in biological systems. Biological systems have also revealed pathways whereby CuII can oxidize organic substrates, and several chemical Cu-based catalyst systems exhibit intriguing similarities to enzymatic active sites. Herein, studies of several chemical copper-catalyzed aerobic oxidation reactions are reported, and, in many cases, the reactivity is compared to closely related enzymatic reactions. Chapter 1 summarizes challenges, opportunities, and progress made by our research group toward achieving selective and efficient Cu-catalyzed aerobic oxidation reactions. Chapter 2 describes a mechanistic study of aerobic alcohol oxidation catalyzed by Cu together with redox-active organic azodicarboxylates. Chapter 3 explains how Cu produces a redox-active organic nitroxyl cocatalyst under catalytic conditions from a simple diamine precursor. Chapter 4 details the investigation of single-electron transfer from phenol substrates to CuII.




Oxidative Cross-Coupling Reactions


Book Description

The first handbook on this emerging field provides a comprehensive overview of transition metal-catalyzed coupling reactions in the presence of an oxidant. Following an introduction to the general concept and mechanism of this reaction class, the team of authors presents chapters on C-C cross-coupling reactions using organometallic partners, C-Heteroatom bond forming reactions via oxidative couplings, and C-H couplings via C-H activation. The text also covers such groundbreaking topics as recent achievements in the fields of C-C and C-X bond formation reactions as well as C-H activation involving oxidative couplings. With its novel and concise approach towards important building blocks in organic chemistry and its focus on synthetic applications, this handbook is of great interest to all synthetic chemists in academia and industry alike.




Liquid Phase Aerobic Oxidation Catalysis


Book Description

The first book to place recent academic developments within the context of real life industrial applications, this is a timely overview of the field of aerobic oxidation reactions in the liquid phase that also illuminates the key challenges that lie ahead. As such, it covers both homogeneous as well as heterogeneous chemocatalysis and biocatalysis, along with examples taken from various industries: bulk chemicals and monomers, specialty chemicals, flavors and fragrances, vitamins, and pharmaceuticals. One chapter is devoted to reactor concepts and engineering aspects of these methods, while another deals with the relevance of aerobic oxidation catalysis for the conversion of renewable feedstock. With chapters written by a team of academic and industrial researchers, this is a valuable reference for synthetic and catalytic chemists at universities as well as those working in the pharmaceutical and fine chemical industries seeking a better understanding of these reactions and how to design large scale processes based on this technology.




Mechanistic Studies and Catalyst Development of Palladium-catalyzed Aerobic C-h Oxidations of (hetero)aromatics


Book Description

The selective oxidation of C-H bonds in (hetero)aromatics provides an efficient access to functionalized aromatic molecules of industrial interest. Aerobic oxygen is an ideal terminal oxidants for this transformation because it is readily available and often produces water as the sole byproduct. Homogeneous palladium catalysts are eminently compatible with aerobic turnovers and have seen success in numerous aerobic oxidation processes (e. g., alkene oxidation, alcohol oxidation). In contrast, palladium-catalyzed aerobic oxidative C-H functionalization has been rather underdeveloped. Challenges include slow catalytic turnover, catalyst decomposition and lack of selectivity control (e.g., site selectivity, homo- vs. cross-coupling selectivity). This thesis presents three research projects with different approaches to tackle the unsolved problems in the reaction class of palladium-catalyzed aerobic C-H oxidation of (hetero)aromatics. The reaction mechanism of C-H/C-H coupling of [o]-xylene was characterized, which disclosed a novel, bimetallic pathway. Built on this work, the effect of copper cocatalyst in this reaction was investigated, which revealed a non-traditional role of copper salt in oxidative palladium catalysis and led to the discovery of an improved catalyst system. Last, a synthetic methodology for aerobic indole C-H arylation with ligand-controlled site selectivity was developed, which provided efficient access to pharmaceutically-relevant aryl indoles and led to preliminary mechanistic insights into regiocontrol.




Catalytic Aerobic Oxidations


Book Description

Oxidation reactions are an important chemical transformation in both academia and industry. Among the major advances in the field has been the development of catalytic processes, which are not only selective and efficient, but also allow the replacement of common stoichiometric oxidants with molecular oxygen, ideally from air at atmospheric pressure. This results in processes with higher atom efficiency, where water is the only side product in line with the principles of green chemistry. Focusing on the use of molecular oxygen as the terminal oxidant, this book covers recent advances in both heterogeneous and homogeneous systems, with and without metals and on the “taming” of the highly reactive oxygen gas by use of micro-flow reactors and membranes. A useful reference for industrial and academic chemists working on oxidation processes, as well as green chemists.




Organometallic and Single-electron-transfer Mechanisms of Copper(II)-catalyzed Aerobic C-H Oxidation


Book Description

Copper-catalyzed aerobic C-H oxidation strategies are of great synthetic interest and are under active development. Cu(II) promotes a wide range of oxidative coupling reactions and these reactions can be linked to aerobic catalytic turnover due to the facile oxidation of Cu(I) to Cu(II) by O2. However, the mechanisms of these reactions are not well understood. Cu(II) can promote single-electron oxidation of electron-rich substrates, but new reactions have been developed featuring substrates that are electron-deficient or appear unlikely to undergo single-electron-transfer (SET). Evidence for organometallic intermediates has been obtained in some of these reactions. This thesis describes mechanistic studies of Cu(II)-mediated C-H oxidations that were carried out in order to gain further understanding of factors that promote organometallic or SET mechanisms. Procedures for Cu(II)-mediated C-H oxidation of an amidoquinoline substrate were developed and divergent regioselectivity of functionalization was observed depending on reaction conditions. Experimental and computational analysis is consistent with a switch between organometallic and SET-based C-H oxidation pathways upon changing from basic to acidic reaction conditions. The presence of a Bronsted basic ligand on the Cu(II) center facilitates C-H activation by an organometallic mechanism, while acidic conditions enhance the Cu(II) reduction potential, thereby favoring SET. The results of this study show that a macrocyclic chelate is not required to achieve organometallic C-H activation by Cu(II). Kinetic studies of Cu(II)-catalyzed oxidative halogenation of the electron-rich substrates 1,3-dimethoxybenzene and phenol were performed. Though chlorination and bromination occur under similar reaction conditions, the mechanisms are different. Experiments indicate the chlorination mechanism is consistent with a single-electron-transfer mechanism in which successive equivalents of Cu(II)-halide oxidize the arene to an aryl-radical-cation and deliver a chlorine atom. This mechanism is different than the commonly proposed mechanism in which a Cu(II)-phenoxide undergoes intramolecular electron-transfer to generate CuI and a phenoxyl radical. The bromination mechanism is more consistent with electrophilic bromination by Br2, which may be generated from disproportionation of CuBr2. Aryl-Pd(IV) triazamacrocyclic complexes were generated which are analogous to known aryl-Cu(III) triazamacrocyclic intermediates in Cu-mediated aerobic aryl-C-H bond oxidation.




Copper-Mediated Cross-Coupling Reactions


Book Description

Providing comprehensive insight into the use of copper in cross-coupling reactions, Copper-Mediated Cross-Coupling Reactions provides a complete up-to-date collection of the available reactions and catalytic systems for the formation of carbon-heteroatom and carbon-carbon bonds. This essential reference covers a broad scope of copper-mediated reactions, their variations, key advances, improvements, and an array of academic and industrial applications that have revolutionized the field of organic synthesis. The text also discusses the mechanism of these transformations, the use of copper as cost-efficient alternative to palladium, as well as recently developed methods for conducting copper-mediated reactions with supported catalysts.




Redox-Active Ligands


Book Description

Redox-Active Ligands Authoritative resource showcasing a new family of ligands that can lead to better catalysts and promising applications in organic synthesis Redox-Active Ligands gives a comprehensive overview of the unique features of redox-active ligands, describing their structure and synthesis, the characterization of their coordination complexes, and important applications in homogeneous catalysis. The work reflects the diversity of the subject by including ongoing research spanning coordination chemistry, organometallic chemistry, bioinspired catalysis, proton and electron transfer, and the ability of such ligands to interact with early and late transition metals, lanthanides, and actinides. The book is divided into three parts, devoted to introduction and concepts, applications, and case studies. After the introduction on key concepts related to the field, and the different types of ligands and complexes in which ligand-centered redox activity is commonly observed, mechanistic and computational studies are described. The second part focuses on catalytic applications of redox-active complexes, including examples from radical transformations, coordination chemistry and organic synthesis. Finally, case studies of redox-active guanidine ligands, and of lanthanides and actinides are presented. Other specific sample topics covered include: An overview of the electronic features of redox-active ligands, covering their historical perspective and biological background The versatility and mode of action of redox-active ligands, which sets them apart from more classic and tunable ligands such as phosphines or N-heterocyclic carbenes Preparation and catalytic applications of complexes of stable N-aryl radicals Metal complexes with redox-active ligands in H+/e- transfer transformations By providing up-to-date information on important concepts and applications, Redox-Active Ligands is an essential reading for researchers working in organometallic and coordination chemistry, catalysis, organic synthesis, and (bio)inorganic chemistry, as well as newcomers to the field.




Transition Metal Catalysis in Aerobic Alcohol Oxidation


Book Description

This book deals with the search for environmentally benign procedures for the oxidation of alcohols and gives an overview of their transition-metal-catalyzed aerobic oxidation.