Metamath: A Computer Language for Mathematical Proofs


Book Description

Metamath is a computer language and an associated computer program for archiving, verifying, and studying mathematical proofs. The Metamath language is simple and robust, with an almost total absence of hard-wired syntax, and we believe that it provides about the simplest possible framework that allows essentially all of mathematics to be expressed with absolute rigor. While simple, it is also powerful; the Metamath Proof Explorer (MPE) database has over 23,000 proven theorems and is one of the top systems in the "Formalizing 100 Theorems" challenge. This book explains the Metamath language and program, with specific emphasis on the fundamentals of the MPE database.




Meta Math!


Book Description

Gregory Chaitin, one of the world’s foremost mathematicians, leads us on a spellbinding journey, illuminating the process by which he arrived at his groundbreaking theory. Chaitin’s revolutionary discovery, the Omega number, is an exquisitely complex representation of unknowability in mathematics. His investigations shed light on what we can ultimately know about the universe and the very nature of life. In an infectious and enthusiastic narrative, Chaitin delineates the specific intellectual and intuitive steps he took toward the discovery. He takes us to the very frontiers of scientific thinking, and helps us to appreciate the art—and the sheer beauty—in the science of math.







Sets, Models and Proofs


Book Description

This textbook provides a concise and self-contained introduction to mathematical logic, with a focus on the fundamental topics in first-order logic and model theory. Including examples from several areas of mathematics (algebra, linear algebra and analysis), the book illustrates the relevance and usefulness of logic in the study of these subject areas. The authors start with an exposition of set theory and the axiom of choice as used in everyday mathematics. Proceeding at a gentle pace, they go on to present some of the first important results in model theory, followed by a careful exposition of Gentzen-style natural deduction and a detailed proof of Gödel’s completeness theorem for first-order logic. The book then explores the formal axiom system of Zermelo and Fraenkel before concluding with an extensive list of suggestions for further study. The present volume is primarily aimed at mathematics students who are already familiar with basic analysis, algebra and linear algebra. It contains numerous exercises of varying difficulty and can be used for self-study, though it is ideally suited as a text for a one-semester university course in the second or third year.




Meta-calculus


Book Description

This book describes systems of calculus, called meta-calculi, that arose from the problem of measuring stock-price performance when taking all intermediate prices into consideration. The meta-calculi provide mathematical tools for use in science, engineering, and mathematics. They appear to have potential for use as alternatives to the classical calculus of Newton and Leibniz. It may well be that they can be used to define new concepts, to yield new or simpler laws, or to formulate or solve problems.




Non-Newtonian Calculus


Book Description

The non-Newtonian calculi provide a wide variety of mathematical tools for use in science, engineering, and mathematics. They appear to have considerable potential for use as alternatives to the classical calculus of Newton and Leibniz. It may well be that these calculi can be used to define new concepts, to yield new or simpler laws, or to formulate or solve problems.




A First Course in Mathematical Logic and Set Theory


Book Description

A mathematical introduction to the theory and applications of logic and set theory with an emphasis on writing proofs Highlighting the applications and notations of basic mathematical concepts within the framework of logic and set theory, A First Course in Mathematical Logic and Set Theory introduces how logic is used to prepare and structure proofs and solve more complex problems. The book begins with propositional logic, including two-column proofs and truth table applications, followed by first-order logic, which provides the structure for writing mathematical proofs. Set theory is then introduced and serves as the basis for defining relations, functions, numbers, mathematical induction, ordinals, and cardinals. The book concludes with a primer on basic model theory with applications to abstract algebra. A First Course in Mathematical Logic and Set Theory also includes: Section exercises designed to show the interactions between topics and reinforce the presented ideas and concepts Numerous examples that illustrate theorems and employ basic concepts such as Euclid’s lemma, the Fibonacci sequence, and unique factorization Coverage of important theorems including the well-ordering theorem, completeness theorem, compactness theorem, as well as the theorems of Löwenheim–Skolem, Burali-Forti, Hartogs, Cantor–Schröder–Bernstein, and König An excellent textbook for students studying the foundations of mathematics and mathematical proofs, A First Course in Mathematical Logic and Set Theory is also appropriate for readers preparing for careers in mathematics education or computer science. In addition, the book is ideal for introductory courses on mathematical logic and/or set theory and appropriate for upper-undergraduate transition courses with rigorous mathematical reasoning involving algebra, number theory, or analysis.




Matheuristics


Book Description

Metaheuristics support managers in decision-making with robust tools that provide high-quality solutions to important applications in business, engineering, economics, and science in reasonable time frames, but finding exact solutions in these applications still poses a real challenge. However, because of advances in the fields of mathematical optimization and metaheuristics, major efforts have been made on their interface regarding efficient hybridization. This edited book will provide a survey of the state of the art in this field by providing some invited reviews by well-known specialists as well as refereed papers from the second Matheuristics workshop to be held in Bertinoro, Italy, June 2008. Papers will explore mathematical programming techniques in metaheuristics frameworks, and especially focus on the latest developments in Mixed Integer Programming in solving real-world problems.




Metamathematics of First-Order Arithmetic


Book Description

A much-needed monograph on the metamathematics of first-order arithmetic, paying particular attention to fragments of Peano arithmetic.




Recursion Theory for Metamathematics


Book Description

This work is a sequel to the author's Gödel's Incompleteness Theorems, though it can be read independently by anyone familiar with Gödel's incompleteness theorem for Peano arithmetic. The book deals mainly with those aspects of recursion theory that have applications to the metamathematics of incompleteness, undecidability, and related topics. It is both an introduction to the theory and a presentation of new results in the field.