Computational Explorations in Cognitive Neuroscience


Book Description

This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.




Neural Computation and Psychology


Book Description

The papers that appear in this volume are refereed versions of presenta tions made at the third Neural Computation and Psychology Workshop, held at Stirling University, Scotland, from 31 August to 2 September 1994. The aim of this series of conferences has been to explore the interface between Neural Computing and Psychology: this has been a fruitful area for many researchers for a number of reasons. The development ofNeural Computation has supplied tools to researchers in Cognitive Neuroscience, allowing them to look at possible mechanisms for implementing theories which would otherwise remain 'black box' techniques. These theories may be high-level theories, concerned with interaction between a number of brain areas, or low-level, describing the way in which smaller local groups of neurons behave. Neural Computation techniques have allowed computer scientists to implement systems which are based on how real brains appear to function, providing effective pattern recognition systems. We can thus mount a two-pronged attack on perception. The papers here come from both the Cognitive Psychology viewpoint and from the Computer Science viewpoint: it is a mark of the growing maturity of the interface between the two subjects that they can under stand each other's papers, and the level of discussion at the workshop itself showed how important each camp considers the other to be. The papers here are divided into four sections, reflecting the primary areas of the material.




Fundamentals of Neural Network Modeling


Book Description

Provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. Over the past few years, computer modeling has become more prevalent in the clinical sciences as an alternative to traditional symbol-processing models. This book provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. It is intended to make the neural network approach accessible to practicing neuropsychologists, psychologists, neurologists, and psychiatrists. It will also be a useful resource for computer scientists, mathematicians, and interdisciplinary cognitive neuroscientists. The editors (in their introduction) and contributors explain the basic concepts behind modeling and avoid the use of high-level mathematics. The book is divided into four parts. Part I provides an extensive but basic overview of neural network modeling, including its history, present, and future trends. It also includes chapters on attention, memory, and primate studies. Part II discusses neural network models of behavioral states such as alcohol dependence, learned helplessness, depression, and waking and sleeping. Part III presents neural network models of neuropsychological tests such as the Wisconsin Card Sorting Task, the Tower of Hanoi, and the Stroop Test. Finally, part IV describes the application of neural network models to dementia: models of acetycholine and memory, verbal fluency, Parkinsons disease, and Alzheimer's disease. Contributors J. Wesson Ashford, Rajendra D. Badgaiyan, Jean P. Banquet, Yves Burnod, Nelson Butters, John Cardoso, Agnes S. Chan, Jean-Pierre Changeux, Kerry L. Coburn, Jonathan D. Cohen, Laurent Cohen, Jose L. Contreras-Vidal, Antonio R. Damasio, Hanna Damasio, Stanislas Dehaene, Martha J. Farah, Joaquin M. Fuster, Philippe Gaussier, Angelika Gissler, Dylan G. Harwood, Michael E. Hasselmo, J, Allan Hobson, Sam Leven, Daniel S. Levine, Debra L. Long, Roderick K. Mahurin, Raymond L. Ownby, Randolph W. Parks, Michael I. Posner, David P. Salmon, David Servan-Schreiber, Chantal E. Stern, Jeffrey P. Sutton, Lynette J. Tippett, Daniel Tranel, Bradley Wyble




Computational Models Of Cognitive Processes - Proceedings Of The 13th Neural Computation And Psychology Workshop


Book Description

Computational Models of Cognitive Processes collects refereed versions of papers presented at the 13th Neural Computation and Psychology Workshop (NCPW13) that took place July 2012, in San Sebastian (Spain). This workshop series is a well-established and unique forum that brings together researchers from such diverse disciplines as artificial intelligence, cognitive science, computer science, neurobiology, philosophy and psychology to discuss their latest work on models of cognitive processes.




An Introductory Course in Computational Neuroscience


Book Description

A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.




4th Neural Computation and Psychology Workshop, London, 9–11 April 1997


Book Description

This volume collects together refereed versions of twenty-five papers presented at the 4th Neural Computation and Psychology Workshop, held at University College London in April 1997. The "NCPW" workshop series is now well established as a lively forum which brings together researchers from such diverse disciplines as artificial intelligence, mathematics, cognitive science, computer science, neurobiology, philosophy and psychology to discuss their work on connectionist modelling in psychology. The general theme of this fourth workshop in the series was "Connectionist Repre sentations", a topic which not only attracted participants from all these fields, but from allover the world as well. From the point of view of the conference organisers focusing on representational issues had the advantage that it immediately involved researchers from all branches of neural computation. Being so central both to psychology and to connectionist modelling, it is one area about which everyone in the field has their own strong views, and the diversity and quality of the presentations and, just as importantly, the discussion which followed them, certainly attested to this.




Connectionist Models in Cognitive Neuroscience


Book Description

1. Introdudion This volume collects together the refereed versions of 25 papers presented at the 5th Neural Computation and Psychology Workshop (NCPW5), held at the University of Birmingham from the 8th until the lOth of September 1998. The NCPW is a well-established, lively forum, which brings together researchers from a range of disciplines (artificial intelligence, mathematics, cognitive science, computer science, neurobiology, philosophy and psychology), all of whom are interested in the application of neurally-inspired (connectionist) models to topics in psychology. The theme of the 5th workshop in the series was Connectionist models in cognitive neuroscience', and the workshop aimed to bring together papers focused on the inter-relations between functional (psychological) accounts of cognition and neural accounts of underlying brain processes, linked by connectionist models. From the very beginnings of modern psychology, with the work of William James and his contemporaries, researchers have believed it important to relate behavioural analyses to neurological underpinnings. However, with the advent of connectionist modelling, where models are at least inspired by neuronal processes, this enterprise has received a new boost. With this volume, we hope that this volume adds one further mosaic stone to this ambitious objective, of unifying functional and neuronal accounts of performance.




Computational Neuroscience for Advancing Artificial Intelligence: Models, Methods and Applications


Book Description

"This book argues that computational models in behavioral neuroscience must be taken with caution, and advocates for the study of mathematical models of existing theories as complementary to neuro-psychological models and computational models"--




From Neuron to Cognition via Computational Neuroscience


Book Description

A comprehensive, integrated, and accessible textbook presenting core neuroscientific topics from a computational perspective, tracing a path from cells and circuits to behavior and cognition. This textbook presents a wide range of subjects in neuroscience from a computational perspective. It offers a comprehensive, integrated introduction to core topics, using computational tools to trace a path from neurons and circuits to behavior and cognition. Moreover, the chapters show how computational neuroscience—methods for modeling the causal interactions underlying neural systems—complements empirical research in advancing the understanding of brain and behavior. The chapters—all by leaders in the field, and carefully integrated by the editors—cover such subjects as action and motor control; neuroplasticity, neuromodulation, and reinforcement learning; vision; and language—the core of human cognition. The book can be used for advanced undergraduate or graduate level courses. It presents all necessary background in neuroscience beyond basic facts about neurons and synapses and general ideas about the structure and function of the human brain. Students should be familiar with differential equations and probability theory, and be able to pick up the basics of programming in MATLAB and/or Python. Slides, exercises, and other ancillary materials are freely available online, and many of the models described in the chapters are documented in the brain operation database, BODB (which is also described in a book chapter). Contributors Michael A. Arbib, Joseph Ayers, James Bednar, Andrej Bicanski, James J. Bonaiuto, Nicolas Brunel, Jean-Marie Cabelguen, Carmen Canavier, Angelo Cangelosi, Richard P. Cooper, Carlos R. Cortes, Nathaniel Daw, Paul Dean, Peter Ford Dominey, Pierre Enel, Jean-Marc Fellous, Stefano Fusi, Wulfram Gerstner, Frank Grasso, Jacqueline A. Griego, Ziad M. Hafed, Michael E. Hasselmo, Auke Ijspeert, Stephanie Jones, Daniel Kersten, Jeremie Knuesel, Owen Lewis, William W. Lytton, Tomaso Poggio, John Porrill, Tony J. Prescott, John Rinzel, Edmund Rolls, Jonathan Rubin, Nicolas Schweighofer, Mohamed A. Sherif, Malle A. Tagamets, Paul F. M. J. Verschure, Nathan Vierling-Claasen, Xiao-Jing Wang, Christopher Williams, Ransom Winder, Alan L. Yuille




Connectionist Models Of Behaviour And Cognition Ii - Proceedings Of The 11th Neural Computation And Psychology Workshop


Book Description

The neural computational approach to cognitive and psychological processes is relatively new. However, Neural Computation and Psychology Workshops (NCPW), first held 16 years ago, lie at the heart of this fast-moving discipline, thanks to its interdisciplinary nature — bringing together researchers from different disciplines such as artificial intelligence, cognitive science, computer science, neurobiology, philosophy and psychology to discuss their work on models of cognitive processes.Once again, the Eleventh Neural Computation and Psychology Workshop (NCPW11), held in 2008 at the University of Oxford (England), reflects the interdisciplinary nature and wide range of backgrounds of this field. This volume is a collection of peer-reviewed contributions of most of the papers presented at NCPW11 by researchers from four continents and 15 countries.