Show Me the Evidence


Book Description

The first comprehensive history of the Obama administration's evidence-based initiatives. From its earliest days, the Obama administration planned and enacted several initiatives to fund social programs based on rigorous evidence of success. Ron Haskins and Greg Margolis tell the story of six—spanning preschool and K-12 education, teen pregnancy, employment and training, health, and community-based programs. Readers will appreciate the fast-moving descriptions of the politics and policy debates that shaped these federal programs and the analysis of whether they will truly reshape federal social policy and greatly improve its impacts on the nation's social problems. Based on interviews with 134 individuals (including advocates, officials at the Office of Management and Budget and the Domestic Policy Council, Congressional staff, and officials in the federal agencies administering the initiatives) as well as Congressional and administration documents and news accounts, the authors examine each of the six initiatives in separate chapters. The story of each initiative includes a review of the social problem the initiative addresses; the genesis and enactment of the legislation that authorized the initiative; and the development of the procedures used by the administration to set the evidence standard and evaluation requirements—including the requirements for grant applications and awarding of grants.




Generating Evidence for Genomic Diagnostic Test Development


Book Description

Ten years after the sequencing of the human genome, scientists have developed genetic tests that can predict a person's response to certain drugs, estimate the risk of developing Alzheimer's disease, and make other predictions based on known links between genes and diseases. However, genetic tests have yet to become a routine part of medical care, in part because there is not enough evidence to show they help improve patients' health. The Institute of Medicine (IOM) held a workshop to explore how researchers can gather better evidence more efficiently on the clinical utility of genetic tests. Generating Evidence for Genomic Diagnostic Test Development compares the evidence that is required for decisions regarding clearance, use, and reimbursement, to the evidence that is currently generated. The report also addresses innovative and efficient ways to generate high-quality evidence, as well as barriers to generating this evidence. Generating Evidence for Genomic Diagnostic Test Development contains information that will be of great value to regulators and policymakers, payers, health-care providers, researchers, funders, and evidence-based review groups.




Clinical Applications for Next-Generation Sequencing


Book Description

Clinical Applications for Next Generation Sequencing provides readers with an outstanding postgraduate resource to learn about the translational use of NGS in clinical environments. Rooted in both medical genetics and clinical medicine, the book fills the gap between state-of-the-art technology and evidence-based practice, providing an educational opportunity for users to advance patient care by transferring NGS to the needs of real-world patients. The book builds an interface between genetic laboratory staff and clinical health workers to not only improve communication, but also strengthen cooperation. Users will find valuable tactics they can use to build a systematic framework for understanding the role of NGS testing in both common and rare diseases and conditions, from prenatal care, like chromosomal abnormalities, up to advanced age problems like dementia. Fills the gap between state-of-the-art technology and evidence-based practice Provides an educational opportunity which advances patient care through the transfer of NGS to real-world patient assessment Promotes a practical tool that clinicians can apply directly to patient care Includes a systematic framework for understanding the role of NGS testing in many common and rare diseases Presents evidence regarding the important role of NGS in current diagnostic strategies




Next Generation Evidence


Book Description

Next Generation Evidence serves as a prequel to Show Me the Evidence: Obama's Fight for Rigor and Results in Social Policy by Ron Haskins and Greg Margolis. While Show Me the Evidence highlighted the importance of prioritizing funding for programs with evidence, Next Generation Evidence looks at how we can build the pipeline of evidence-producing programs. Evidence is remarkably powerful; it helps us understand the needs of communities, make decisions in times of change and scarcity, and build and do more of what works. However, practitioners face a number of structural and practical hurdles to building and using evidence. Traditional evaluation and research methods are often not timely, affordable, meaningful, or inclusive for helping practitioners make decisions to increase their impact for people and communities. Too often and for too long, evaluation was a thing done to practitioners and the communities they serve, relegating them to a passive role when they should be regarded as leaders of this work. Worse, their data and evidence has been used against them in disempowering thumbs-up, thumbs-down circumstances, rather than for learning and improvement that leads to impact. Next Generation Evidence features innovative thinking from leaders across policy, philanthropy, research, and practice. Together, these leaders lay out a vision for a stronger, more equitable data and evidence ecosystem that centers on the voices of people and communities most directly impacted by the problems we seek to solve. Throughout the book, case studies featuring practitioners at various stages in their evidence-building journey highlight concrete illustrations of how continuous evidence building can benefit organizations and outcomes for communities.




Real-World Evidence Generation and Evaluation of Therapeutics


Book Description

The volume and complexity of information about individual patients is greatly increasing with use of electronic records and personal devices. Potential effects on medical product development in the context of this wealth of real-world data could be numerous and varied, ranging from the ability to determine both large-scale and patient-specific effects of treatments to the ability to assess how therapeutics affect patients' lives through measurement of lifestyle changes. In October 2016, the National Academies of Sciences, Engineering, and Medicine held a workshop to facilitate dialogue among stakeholders about the opportunities and challenges for incorporating real-world evidence into all stages in the process for the generation and evaluation of therapeutics. Participants explored unmet stakeholder needs and opportunities to generate new kinds of evidence that meet those needs. This publication summarizes the presentations and discussions from the workshop.




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices


Book Description

When it’s time for a game change, you need a guide to the new rules. Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices provides a play-by-play understanding of the practices strand of A Framework for K–12 Science Education (Framework) and the Next Generation Science Standards (NGSS). Written in clear, nontechnical language, this book provides a wealth of real-world examples to show you what’s different about practice-centered teaching and learning at all grade levels. The book addresses three important questions: 1. How will engaging students in science and engineering practices help improve science education? 2. What do the eight practices look like in the classroom? 3. How can educators engage students in practices to bring the NGSS to life? Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices was developed for K–12 science teachers, curriculum developers, teacher educators, and administrators. Many of its authors contributed to the Framework’s initial vision and tested their ideas in actual science classrooms. If you want a fresh game plan to help students work together to generate and revise knowledge—not just receive and repeat information—this book is for you.




Guide to Implementing the Next Generation Science Standards


Book Description

A Framework for K-12 Science Education and Next Generation Science Standards (NGSS) describe a new vision for science learning and teaching that is catalyzing improvements in science classrooms across the United States. Achieving this new vision will require time, resources, and ongoing commitment from state, district, and school leaders, as well as classroom teachers. Successful implementation of the NGSS will ensure that all K-12 students have high-quality opportunities to learn science. Guide to Implementing the Next Generation Science Standards provides guidance to district and school leaders and teachers charged with developing a plan and implementing the NGSS as they change their curriculum, instruction, professional learning, policies, and assessment to align with the new standards. For each of these elements, this report lays out recommendations for action around key issues and cautions about potential pitfalls. Coordinating changes in these aspects of the education system is challenging. As a foundation for that process, Guide to Implementing the Next Generation Science Standards identifies some overarching principles that should guide the planning and implementation process. The new standards present a vision of science and engineering learning designed to bring these subjects alive for all students, emphasizing the satisfaction of pursuing compelling questions and the joy of discovery and invention. Achieving this vision in all science classrooms will be a major undertaking and will require changes to many aspects of science education. Guide to Implementing the Next Generation Science Standards will be a valuable resource for states, districts, and schools charged with planning and implementing changes, to help them achieve the goal of teaching science for the 21st century.




Evidence-Based Medicine and the Changing Nature of Health Care


Book Description

Drawing on the work of the Roundtable on Evidence-Based Medicine, the 2007 IOM Annual Meeting assessed some of the rapidly occurring changes in health care related to new diagnostic and treatment tools, emerging genetic insights, the developments in information technology, and healthcare costs, and discussed the need for a stronger focus on evidence to ensure that the promise of scientific discovery and technological innovation is efficiently captured to provide the right care for the right patient at the right time. As new discoveries continue to expand the universe of medical interventions, treatments, and methods of care, the need for a more systematic approach to evidence development and application becomes increasingly critical. Without better information about the effectiveness of different treatment options, the resulting uncertainty can lead to the delivery of services that may be unnecessary, unproven, or even harmful. Improving the evidence-base for medicine holds great potential to increase the quality and efficiency of medical care. The Annual Meeting, held on October 8, 2007, brought together many of the nation's leading authorities on various aspects of the issues - both challenges and opportunities - to present their perspectives and engage in discussion with the IOM membership.




Redesigning the Clinical Effectiveness Research Paradigm


Book Description

Recent scientific and technological advances have accelerated our understanding of the causes of disease development and progression, and resulted in innovative treatments and therapies. Ongoing work to elucidate the effects of individual genetic variation on patient outcomes suggests the rapid pace of discovery in the biomedical sciences will only accelerate. However, these advances belie an important and increasing shortfall between the expansion in therapy and treatment options and knowledge about how these interventions might be applied appropriately to individual patients. The impressive gains made in Americans' health over the past decades provide only a preview of what might be possible when data on treatment effects and patient outcomes are systematically captured and used to evaluate their effectiveness. Needed for progress are advances as dramatic as those experienced in biomedicine in our approach to assessing clinical effectiveness. In the emerging era of tailored treatments and rapidly evolving practice, ensuring the translation of scientific discovery into improved health outcomes requires a new approach to clinical evaluation. A paradigm that supports a continual learning process about what works best for individual patients will not only take advantage of the rigor of trials, but also incorporate other methods that might bring insights relevant to clinical care and endeavor to match the right method to the question at hand. The Institute of Medicine Roundtable on Value & Science-Driven Health Care's vision for a learning healthcare system, in which evidence is applied and generated as a natural course of care, is premised on the development of a research capacity that is structured to provide timely and accurate evidence relevant to the clinical decisions faced by patients and providers. As part of the Roundtable's Learning Healthcare System series of workshops, clinical researchers, academics, and policy makers gathered for the workshop Redesigning the Clinical Effectiveness Research Paradigm: Innovation and Practice-Based Approaches. Participants explored cutting-edge research designs and methods and discussed strategies for development of a research paradigm to better accommodate the diverse array of emerging data resources, study designs, tools, and techniques. Presentations and discussions are summarized in this volume.