NMR Spectroscopy of Proteins - Computational and Experimental Studies


Book Description

Nuclear magnetic resonance (NMR) spectroscopy is a powerful research technique widely used for establishing three-dimensional structures, dynamic properties and intermolecular interactions of proteins. Its non-destructiveness, high information content and applicability for a broad range of samples, both in solution and in the solid state, renders it one of the best tools in the modern structural biology. Liquid-state NMR spectroscopy, however, also has some drawbacks, such as relatively low inherent sensitivity, complexity of the resultant spectra, high time demands and poor suitability for the analysis of large biomolecular complexes and membrane proteins. Due to the variety of aspects that might be improved and optimised, it's been a target of constant development for the last few decades and still is a primary focus of modern biochemical science. The goal of my PhD projects was to understand and improve several aspects and techniques of liquid-state protein NMR spectroscopy, employing both computational and experimental analysis. In the present thesis, I describe the results of my work on a wide variety of topics. The first project is devoted to optimisations of experiments suffering from the radiation damping effect. The second project is a computational analysis aimed at investigations of the applicability of mobile lanthanide-binding tags in protein-ligand interaction studies. The third project is an investigation of the structure and functions of single-stranded DNA-binding protein (SSB) using solution NMR, targeted at the elucidation of the mechanism by which the protein plays its role in the metabolism of single-stranded DNA.




NMR of Proteins


Book Description

Determination of structures of larger proteins in solution by three- and four-dimensional heteronuclear magnetic resonance spectroscopy. Methodological advances in protein NMR. Determination of high-resolution NMR structures of proteins. Multidimensional NMR studies of immunosuppressant/immunophilin complexes. NMR studies of the structure and role of modules involved in protein-protein interactions. NMR structural studies of membrane proteins. Heteronuclear NMR studies of the molecular synamics of staphylococcal nuclease. Study of protein dynamics by NMR. The folding, stability and dynamics of T4 lysozyme: a perspective using nuclear magnetic resonance.




Protein NMR Spectroscopy


Book Description

Nuclear Magnetic Resonance (NMR) spectroscopy, a physical phenomenon based upon the magnetic properties of certain atomic nuclei, has found a wide range of applications in life sciences over recent decades. This up-to-date volume covers NMR techniques and their application to proteins, with a focus on practical details. Providing newcomers to NMR with practical guidance to carry out successful experiments with proteins and analyze the resulting spectra, those familiar with the chemical applications of NMR will also find it useful in understanding the special requirements of protein NMR.




Intrinsically Disordered Proteins Studied by NMR Spectroscopy


Book Description

This book discusses the paradigm-shifting phenomenon of intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and functional IDP regions (IDPRs). The properties of IDPs and IDPRs are highly complementary to those deriving from the presence of a unique and well-defined three-dimensional fold. Ignored for a long time in high-resolution studies of proteins, intrinsic protein disorder is now recognized as one of the key features for a large variety of cellular functions, where structural flexibility presents a functional advantage in terms of binding plasticity and promiscuity and this volume explores this exciting new research. Recent progress in the field has radically changed our perspective to study IDPs through NMR: increasingly complex IDPs can now be characterized, a wide range of observables can be determined reporting on the structural and dynamic properties, computational methods to describe the structure and dynamics are in continuous development and IDPs can be studied in environments as complex as whole cells. This volume communicates the new exciting possibilities offered by NMR and presents open questions to foster further developments. Intrinsically Disordered Proteins Studied by NMR Spectroscopy provides a snapshot to researchers entering the field as well as providing a current overview for more experienced scientists in related areas.




Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy


Book Description

This volume is the scientific chronicle of the NATO Advanced Research Workshop on Computational Aspects of the Study of Biological Macro molecules by Nuclear Magnetic Resonance Spectroscopy, which was held June 3-8, 1990 at Il Ciocco, near Barga, Italy. The use of computers in the study of biological macromolecules by NMR spectroscopy is ubiquitous. The applications are diverse, including data col lection, reduction, and analysis. Furthermore, their use is rapidly evolv ing, driven by the development of new experimental methods in NMR and molecular biology and by phenomenal increases in computational perfor mance available at reasonable cost. Computers no longer merely facilitate, but are now absolutely essential in the study of biological macromolecules by NMR, due to the size and complexity of the data sets that are obtained from modern experiments. The Workshop, and this proceedings volume, provide a snapshot of the uses of computers in the NMR of biomolecules. While by no means exhaustive, the picture that emerges illustrates both the· importance and the diversity of their application.




Biological NMR Spectroscopy


Book Description

This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.




Protein NMR Spectroscopy


Book Description

Protein NMR Spectroscopy, Second Edition combines a comprehensive theoretical treatment of NMR spectroscopy with an extensive exposition of the experimental techniques applicable to proteins and other biological macromolecules in solution. Beginning with simple theoretical models and experimental techniques, the book develops the complete repertoire of theoretical principles and experimental techniques necessary for understanding and implementing the most sophisticated NMR experiments. Important new techniques and applications of NMR spectroscopy have emerged since the first edition of this extremely successful book was published in 1996. This updated version includes new sections describing measurement and use of residual dipolar coupling constants for structure determination, TROSY and deuterium labeling for application to large macromolecules, and experimental techniques for characterizing conformational dynamics. In addition, the treatments of instrumentation and signal acquisition, field gradients, multidimensional spectroscopy, and structure calculation are updated and enhanced. The book is written as a graduate-level textbook and will be of interest to biochemists, chemists, biophysicists, and structural biologists who utilize NMR spectroscopy or wish to understand the latest developments in this field. Provides an understanding of the theoretical principles important for biological NMR spectroscopy Demonstrates how to implement, optimize and troubleshoot modern multi-dimensional NMR experiments Allows for the capability of designing effective experimental protocols for investigations of protein structures and dynamics Includes a comprehensive set of example NMR spectra of ubiquitin provides a reference for validation of experimental methods




Structure Computation and Dynamics in Protein NMR


Book Description

Volume 17 is the second in a special topic series devoted to modern techniques in protein NMR, under the Biological Magnetic Resonance series. Volume 16, with the subtitle Modern Techniques in Protein NMR , is the first in this series. These two volumes present some of the recent, significant advances in the biomolecular NMR field with emphasis on developments during the last five years. We are honored to have brought together in these volume some of the world s foremost experts who have provided broad leadership in advancing this field. Volume 16 contains - vances in two broad categories: I. Large Proteins, Complexes, and Membrane Proteins and II. Pulse Methods. Volume 17 contains major advances in: I. Com- tational Methods and II. Structure and Dynamics. The opening chapter of volume 17 starts with a consideration of some important aspects of modeling from spectroscopic and diffraction data by Wilfred van Gunsteren and his colleagues. The next two chapters deal with combined automated assignments and protein structure determination, an area of intense research in many laboratories since the traditional manual methods are often inadequate or laborious in handling large volumes of NMR data on large proteins. First, Werner Braun and his associates describe their experience with the NOAH/DIAMOD protocol developed in their laboratory.




Protein NMR for the Millennium


Book Description

Protein NMR for the Millennium is the third volume in a special thematic series devoted to the latest developments in protein NMR under the Biological Magnetic Resonance umbrella. This book is divided into three major sections dealing with significant recent advances in the study of large proteins in solution and solid state, structure refinement, and screening of bioactive ligands. Key Features: TROSY, Segmental isotope labeling of proteins, Hydrogen bond scalar couplings, Structure refinement based on residual dipolar couplings, Written by the world's foremost experts who have provided broad leadership in advancing the protein NMR field.




Protein NMR


Book Description

This book covers new techniques in protein NMR, from basic principles to state-of-the-art research. It covers a spectrum of topics ranging from a “toolbox” for how sequence-specific resonance assignments can be obtained using a suite of 2D and 3D NMR experiments and tips on how overlap problems can be overcome. Further topics include the novel applications of Overhauser dynamic nuclear polarization methods (DNP), assessing protein structure, and aspects of solid-state NMR of macroscopically aligned membrane proteins. This book is an ideal resource for students and researchers in the fields of biochemistry, chemistry, and pharmacology and NMR physics. Comprehensive and intuitively structured, this book examines protein NMR and new novel applications that include the latest technological advances. This book also has the features of: • A selection of various applications and cutting-edge advances, such as novel applications of Overhauser dynamic nuclear polarization methods (DNP) and a suite of 2D and 3D NMR experiments and tips on how overlap problems can be overcome • A pedagogical approach to the methodology • Engaging the reader and student with a clear, yet critical presentation of the applications