Nonlinear Equations in the Applied Sciences


Book Description

Nonlinear Equations in the Applied Sciences




Iterative Methods for Linear and Nonlinear Equations


Book Description

Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment.




Solving Nonlinear Equations with Newton's Method


Book Description

This book on Newton's method is a user-oriented guide to algorithms and implementation. In just over 100 pages, it shows, via algorithms in pseudocode, in MATLAB, and with several examples, how one can choose an appropriate Newton-type method for a given problem, diagnose problems, and write an efficient solver or apply one written by others. It contains trouble-shooting guides to the major algorithms, their most common failure modes, and the likely causes of failure. It also includes many worked-out examples (available on the SIAM website) in pseudocode and a collection of MATLAB codes, allowing readers to experiment with the algorithms easily and implement them in other languages.




Nonlinear Partial Differential Equations in Engineering and Applied Science


Book Description

In this volume are twenty-eight papers from the Conference on Nonlinear Partial Differential Equationsin Engineering and Applied Science, sponsored by the Office of Naval Research and held at the Universityof Rhode Island in June, 1979. Included are contributions from an international group of distinguishedmathematicians, scientists, and engineers coming from a wide variety of disciplines and having a commoninterest in the application of mathematics, particularly nonlinear partial differential equations, to realworld problems.The subject matter ranges from almost purely mathematical topics in numerical analysis and bifurcationtheory to a host of practical applications that involve nonlinear partial differential equations, suchas fluid dynamics, nonlinear waves, elasticity, viscoelasticity, hyperelasticity, solitons, metallurgy, shocklessairfoil design, quantum fields, and Darcy's law on flows in porous media.Non/inear Partial Differential Equations in Engineering and Applied Science focuses on a variety oftopics of specialized, contemporary concern to mathematicians, physical and biological scientists, andengineers who work with phenomena that can be described by nonlinear partial differential equations.




Nonlinear Ordinary Differential Equations


Book Description

Ordinary differential equations have long been an important area of study because of their wide application in physics, engineering, biology, chemistry, ecology, and economics. Based on a series of lectures given at the Universities of Melbourne and New South Wales in Australia, Nonlinear Ordinary Differential Equations takes the reader from basic elementary notions to the point where the exciting and fascinating developments in the theory of nonlinear differential equations can be understood and appreciated. Each chapter is self-contained, and includes a selection of problems together with some detailed workings within the main text. Nonlinear Ordinary Differential Equations helps develop an understanding of the subtle and sometimes unexpected properties of nonlinear systems and simultaneously introduces practical analytical techniques to analyze nonlinear phenomena. This excellent book gives a structured, systematic, and rigorous development of the basic theory from elementary concepts to a point where readers can utilize ideas in nonlinear differential equations.




A Closer Look of Nonlinear Reaction-Diffusion Equations


Book Description

By using mathematical models to describe the physical, biological or chemical phenomena, one of the most common results is either a differential equation or a system of differential equations, together with the correct boundary and initial conditions. The determination and interpretation of their solution are at the base of applied mathematics. Hence the analytical and numerical study of the differential equation is very much essential for all theoretical and experimental researchers, and this book helps to develop skills in this area.Recently non-linear differential equations were widely used to model many of the interesting and relevant phenomena found in many fields of science and technology on a mathematical basis. This problem is to inspire them in various fields such as economics, medical biology, plasma physics, particle physics, differential geometry, engineering, signal processing, electrochemistry and materials science.This book contains seven chapters and practical applications to the problems of the real world. The first chapter is specifically for those with limited mathematical background. Chapter one presents the introduction of non-linear reaction-diffusion systems, various boundary conditions and examples. Real-life application of non-linear reaction-diffusion in different fields with some important non-linear equations is also discussed. In Chapter 2, mathematical preliminaries and various advanced methods of solving non-linear differential equations such as Homotopy perturbation method, variational iteration method, exponential function method etc. are described with examples.Steady and non-steady state reaction-diffusion equations in the plane sheet (chapter 3), cylinder (chapter 4) and spherical (chapter 5) are analyzed. The analytical results published by various researchers in referred journals during 2007-2020 have been addressed in these chapters 4 to 6, and this leads to conclusions and recommendations on what approaches to use on non-linear reaction-diffusion equations.Convection-diffusion problems arise very often in applied sciences and engineering. Non-linear convection-diffusion equations and corresponding analytical solutions in various fields of chemical sciences are discussed in chapter6. Numerical methods are used to provide approximate results for the non-linear problems, and their importance is felt when it is impossible or difficult to solve a given problem analytically. Chapter 7 identifies some of the numerical methods for finding solutions to non-linear differential equations.




Partial Differential Equations III


Book Description

The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis




Nonlinear Systems Of Partial Differential Equations: Applications To Life And Physical Sciences


Book Description

The book presents the theory of diffusion-reaction equations starting from the Volterra-Lotka systems developed in the eighties for Dirichlet boundary conditions. It uses the analysis of applicable systems of partial differential equations as a starting point for studying upper-lower solutions, bifurcation, degree theory and other nonlinear methods. It also illustrates the use of semigroup, stability theorems and W2ptheory. Introductory explanations are included in the appendices for non-expert readers.The first chapter covers a wide range of steady-state and stability results involving prey-predator, competing and cooperating species under strong or weak interactions. Many diagrams are included to easily understand the description of the range of parameters for coexistence. The book provides a comprehensive presentation of topics developed by numerous researchers. Large complex systems are introduced for modern research in ecology, medicine and engineering.Chapter 3 combines the theories of earlier chapters with the optimal control of systems involving resource management and fission reactors. This is the first book to present such topics at research level. Chapter 4 considers persistence, cross-diffusion, and boundary induced blow-up, etc. The book also covers traveling or systems of waves, coupled Navier-Stokes and Maxwell systems, and fluid equations of plasma display. These should be of interest to life and physical scientists.







Nonlinear Partial Differential Equations for Scientists and Engineers


Book Description

This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.