Numerical Modeling of Ductile Tearing Effects on Cleavage Fracture Toughness


Book Description

Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (J{sub c}) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often







Effects of Prior Ductile Tearing on Cleavage Fracture Toughness in the Transition Region


Book Description

Previous work by the authors described a micromechanics fracture model to correct measured J sub c-values for the mechanistic effects of large- scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. Ductile crack extensions of 10-15 X the initial crack tip opening displacement at initiation are considered in plane-strain, finite element computations The finite element results demonstrate a significant elevation in crack-tip constraint due to macroscopic 'sharpening' of the extending tip relative to the-blunt tip at the initiation of growth. However this effect is offset partially by the additional plastic deformation associated with the increased applied J required to grow the crack. The initial a/W ratio, tearing modulus, strain hardening exponent and specimen size interact in a complex manner to define the evolving near-tip conditions for cleavage fracture. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515). J- integral, Constraint, Scaling model, Ductile-brittle, Crack growth effects.




Micromechanism of Cleavage Fracture of Metals


Book Description

In this book the authors focus on the description of the physical nature of cleavage fracture to offer scientists, engineers and students a comprehensive physical model which vividly describes the cleavage microcracking processes operating on the local (microscopic) scale ahead of a defect. The descriptions of the critical event and the criteria for cleavage fracture will instruct readers in how to control the cleavage processes and optimize microstructure to improve fracture toughness of metallic materials. Physical (mechanical) processes of cleavage fracture operating on the local (microscopic) scale, with the focus on the crack nucleation and crack propagation across the particle/grain and grain/grain boundaries Critical event, i.e., the stage of greatest difficulty in forming the microcrack, which controls the cleavage fracture Criteria triggering the cleavage microcracking with incorporation of the actions of macroscopic loading environment into the physical model Effects of microstructure on the cleavage fracture, including the effects of grain size, second phase particles and boundary Comprehensive description of the brittle fracture emerging in TiAl alloys and TiNi memory alloys







Development of Numerical Approaches to Predict Ductile and Cleavage Fracture of Structural Materials


Book Description

"Numerical simulations mainly using finite element method are playing a more and more important role in prediction of fracture-induced failure for high performance structure. This thesis seeks to develop numerical approaches to predict ductile and cleavage fracture in structural materials. For ductile fracture, the discrete void approach reveals the failure mechanisms explicitly and is used to study the trends of fracture toughness. The porous continuum approach provides an effective means to predict extensive crack propagation. We consider the occurrence of material failure (void coalescence) as when localization of plastic flow takes place in the inter-void ligament and obtain the failure criterion as a function of the stress triaxiality ratio and the Lode angle. The Gologanu-Leblond Devaux (GLD) model, which accounts for the evolution of both void volume and void shape, is used to describe the porous placticity behavior and is implemented into ABAQUS via a user subroutine. Numerical simulations are performed to predict extensive crack growth in ductile solids for a thin aluminum 2024-T3 plate and verified by successful predication of crack extension in various specimens, including the multiple site damage speciments. The effect of stress triaxiality and Lode angle is further analyzed and the Xue-Wierzbicki fracture locus is employed as a criterion for void colescence. Combination of GLD model and X-W fracture locus is then applied to a DH-36 steel with specimens experiencing a wide range of stress triaxiality and Lode angles at failure. The numerical simulation results agree very well with the experimental results. For cleavage fracture, a modified three parameter Weibull stress model is proposed and used to predict the fracture of A508 steel at three different temperatures. By integrating the Weibull stress model over the plastic process zone, the failure probability can be obtained and comparison is made with the experiment result. Issues addressed include calibration of the model parameters, introduction of a threshold parameter, dependencies of the model parameters on temperature, plastic strain effect and crack tip triaxiality effect, etc."--Abstract.




Predictions of Specimen Size Dependence on Fracture Toughness for Cleavage and Ductile Tearing


Book Description

A framework for predicting the effect of crack-tip triaxiality on fracture toughness is outlined. This methodology is a two-parameter approach that considers the micromechanism of failure. A local damage parameter is used in conjunction with a crack-tip stress analysis to predict the effect of specimen dimensions on toughness. In the case of cleavage fracture, the local criterion involves the maximum principal normal stress, ?1 as well as the volume over which ?1 acts. The agreement between predictions and experimental data is very good in this case. for initiation of ductile tearing, we defined a damage parameter based on a modified version of the Rice and Tracey hole growth model. The analysis indicates that ductile fracture is less sensitive than cleavage to triaxiality. While this result is broadly consistent with experimental observations, further work is necessary to develop improved local criteria for ductile fracture.




Energy Research Abstracts


Book Description

Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.