Dark-bright Solitons and Vortices in Bose-Einstein Condensates


Book Description

This dissertation focuses on the properties of nonlinear waves in Bose-Einstein condensates (BECs). The fundamental model here is the nonlinear Schrodinger equation, the so-called Gross-Pitaevskii (GP) equation, which is a mean-field description of BECs. The systematic analysis begins by considering the dark-bright (DB)-soliton interactions and multiple-dark-bright-soliton complexes in atomic two-component BECs. The interaction between two DB solitons in a homogeneous condensate and at the presence of the trap are both considered. Our analytical approximation relies in a Hamiltonian perturbation theory, which leads to an equation of motion of the centers of DB-soliton interacting pairs. Employing this equation, we demonstrate the existence of robust DB-soliton molecules, in the form of stationary two- and three-DB-soliton states. Also the equilibrium distance of the constituent solitons and the corresponding oscillation frequencies are found semianalytically, where the latter corresponds to the characteristic anomalous modes' eigenfrequencies that we numerically computed via a so called Bogoliubov-de Gennes (BdG) linearization analysis. Those studies are discussed in Chapter 2. Then, we extend our studies to the dynamics of dark-bright (DB) solitons in binary BECs at finite temperature using a system of two-coupled dissipative GPs. We show that the effect of the bright soliton is to partially stabilize dark solitons against temperature-induced dissipation, thus providing longer lifetimes in Chapter 3. Furthermore, the dark-dark (DD) solitons as a prototypical coherent structure that emerges in two-component BECs are studied and are connected to dark-bright (DB) solitons via SO(2) rotation. We obtained their beating frequency and their frequency of oscillation inside a parabolic trap. They are identified as exact periodic orbits in the Manakov limit of equal inter- and intra- species nonlinearity strengths with and without the trap and we showcase the persistence of such states upon weak deviations from this limit. Also we investigated in detail the effect of the deviation from the Manakov case by considering different from unity scattering length ratios in Chapter 4. Next, we revisited Hamiltonian eigenvalue problems that typically arise in the linearization around a stationary state of a Hamiltonian nonlinear PDE. Also we presented a overview of the known facts for the eigenvalue counts of the corresponding unstable spectra. In particular, we focused on a straightforward plan to implement finite-dimensional techniques for locating this spectrum via the singular points of the meromorphic Krein Matrix and illustrated the value of the approach by considering realistic problems for recently observed experimentally multivortex and multisoliton solutions in atomic Bose-Einstein condensates in Chapter 5. In the two dimensional scenario, we also examine the stability and dynamics of vortices under the effect of dissipation used as a simplified model for the inclusion of the effect of finite temperatures in atomic BECs, which enables an analytical prediction that can be compared directly to numerical results in Chapter 6. In all the above studies, our analytical prediction from the equation of motion are in good agreement with the numerical results from the BdG analysis.




Emergent Nonlinear Phenomena in Bose-Einstein Condensates


Book Description

This book, written by experts in the fields of atomic physics and nonlinear science, covers the important developments in a special aspect of Bose-Einstein condensation, namely nonlinear phenomena in condensates. Topics covered include bright, dark, gap and multidimensional solitons; vortices; vortex lattices; optical lattices; multicomponent condensates; mathematical methods/rigorous results; and the beyond-the-mean-field approach.




Vortices in Bose-Einstein Condensates


Book Description

This book provides an up-to-date approach to the diagnosis and management of endocarditis based on a critical analysis of the recent studies. It is the only up-to-date clinically oriented textbook available on this subject. The book is structured in a format that is easy to follow, clinically relevant and evidence based. The author has a special interest in the application of ultrasound in the study of cardiac structure and function.







Bose–Einstein Condensation in Dilute Gases


Book Description

Since an atomic Bose-Einstein condensate, predicted by Einstein in 1925, was first produced in the laboratory in 1995, the study of ultracold Bose and Fermi gases has become one of the most active areas in contemporary physics. This book explains phenomena in ultracold gases from basic principles, without assuming a detailed knowledge of atomic, condensed matter, and nuclear physics. This new edition has been revised and updated, and includes new chapters on optical lattices, low dimensions, and strongly-interacting Fermi systems. This book provides a unified introduction to the physics of ultracold atomic Bose and Fermi gases for advanced undergraduate and graduate students, as well as experimentalists and theorists. Chapters cover the statistical physics of trapped gases, atomic properties, cooling and trapping atoms, interatomic interactions, structure of trapped condensates, collective modes, rotating condensates, superfluidity, interference phenomena, and trapped Fermi gases. Problems are included at the end of each chapter.




A Primer on Quantum Fluids


Book Description

The aim of this primer is to cover the essential theoretical information, quickly and concisely, in order to enable senior undergraduate and beginning graduate students to tackle projects in topical research areas of quantum fluids, for example, solitons, vortices and collective modes. The selection of the material, both regarding the content and level of presentation, draws on the authors analysis of the success of relevant research projects with newcomers to the field, as well as of the students feedback from many taught and self-study courses on the subject matter. Starting with a brief historical overview, this text covers particle statistics, weakly interacting condensates and their dynamics and finally superfluid helium and quantum turbulence. At the end of each chapter (apart from the first) there are some exercises. Detailed solutions can be made available to instructors upon request to the authors.




Quantum Gases: Finite Temperature And Non-equilibrium Dynamics


Book Description

The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems.This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of editorial notes.Both graduate students and established researchers wishing to understand the state of the art will greatly benefit from this comprehensive and up-to-date review of non-equilibrium and finite temperature techniques in the exciting and expanding field of quantum gases and liquids./a




Bose-Einstein Condensation


Book Description

Bose-Einstein Condensation represents a new state of matter and is one of the cornerstones of quantum physics, resulting in the 2001 Nobel Prize. Providing a useful introduction to one of the most exciting field of physics today, this text will be of interest to a growing community of physicists, and is easily accessible to non-specialists alike.