Observation of a Hydromagnetic Wave in the Earth's Magnetosphere


Book Description

Measurements of a continuous hydromagnetic micropulsation event, which occurred in the pre-dawn magnetosphere on July 29, 1979, are reported as observed by wave and particle instruments onboard the P78-2 (SCATHA) spacecraft. Calculations of the Poynting vector make it clear that the wave is a traveling Alfven wave guided by the earth's magnetic field line. Plasma densities are calculated at L = 7. The phase relationship between the plasma flux and the electromagnetic fields is investigated. A self-consistent set of particle density and particle velocity data is determined, in order to verify the measurement of the electric field. Current magnetospheric models predicting Alfven wave speeds, Alfven wave periods and plasma densities are supported by the study. Keywords: PC5 Micropulsations; Magnetosphere models.




Hydromagnetic Waves in the Magnetosphere and the Ionosphere


Book Description

Here is a fascinating text that integrates topics pertaining to all scales of the MHD-waves, emphasizing the linkages between the ULF-waves below the ionosphere on the ground and magnetospheric MHD-waves. It will be most helpful to graduate and post-graduate students, familiar with advanced calculus, who study the science of MHD-waves in the magnetosphere and ionosphere. The book deals with Ultra-Low-Frequency (ULF)-electromagnetic waves observed on the Earth and in Space.




Plasma Waves in the Magnetosphere


Book Description

This book is a study of plasma waves which are observed in the earth's magnetosphere. The emphasis is on a thorough, but concise, treatment of the necessary theory and the use of this theory to understand the manifold varieties of waves which are observed by ground-based instruments and by satellites. We restrict our treatment to waves with wavelengths short compared with the spatial scales of the background plasma in the mag netosphere. By so doing we exclude large scale magnetohydrodynamic phenomena such as ULF pulsations in the Pc2-5 ranges. The field is an active one and we cannot hope to discuss every wave phenomenon ever observed in the magnetosphere! We try instead to give a good treatment of phenomena which are well understood, and which illustrate as many different parts of the theory as possible. It is thus hoped to put the reader in a position to understand the current literature. The treatment is aimed at a beginning graduate student in the field but it is hoped that it will also be of use as a reference to established workers. A knowledge of electromagnetic theory and some elementary plasma physics is assumed. The mathematical background required in cludes a knowledge of vector calculus, linear algebra, and Fourier trans form theory encountered in standard undergraduate physics curricula. A reasonable acquaintance with the theory of functions of a complex vari able including contour integration and the residue theorem is assumed.




Magnetoseismology


Book Description

Written by a researcher at the forefront of the field, this first comprehensive account of magnetoseismology conveys the physics behind these movements and waves, and explains how to detect and investigate them. Along the way, it describes the principles as applied to remote sensing of near-Earth space and related remote sensing techniques, while also comparing and intercalibrating magnetoseismology with other techniques. The example applications include advanced data analysis techniques that may find wider used in areas ranging from geophysics to medical imaging, and remote sensing using radar systems that are of relevance to defense surveillance systems. As a result, the book not only reviews the status quo, but also anticipates new developments. With many figures and illustrations, some in full color, plus additional computational codes for analysis and evaluation. Aimed at graduate readers, the text assumes knowledge of electromagnetism and physical processes at degree level, but introductory chapters will provide an overview of the relevant plasma physics and magnetospheric physics. The book will thus be of interest to entry-level and established researchers in physics of the Earth's magnetosphere and ionosphere, as well as to students, academics and scientifically literate laypersons with an interest in understanding space weather processes and how these relate to the dynamic behavior of near-Earth space.




Hydromagnetic Waves


Book Description




Geomagnetism


Book Description

Geomagnetism, Volume 4 focuses on the processes, methodologies, technologies, and approaches involved in geomagnetism, including electric fields, solar wind plasma, pulsations, and gravity waves. The selection first offers information on solar wind, magnetosphere, and the magnetopause of the Earth. Discussions focus on magnetopause structure and transfer processes, magnetosphere electric fields, geomagnetically trapped radiation, microstructure of the solar wind plasma, and hydro magnetic fluctuations and discontinuities. The text then examines geomagnetic tail, neutral upper atmosphere, and geomagnetic pulsations and plasma waves in the Earth's magnetosphere. Topics include plasma waves and instabilities in the magnetosphere, waves in a magneto plasma, gravity waves, atmospheric tides, balance equations for mass, momentum and energy, and absorption of solar and particle radiation. The publication takes a look at auroras and physical processes producing magnetosphere substorms and magnetic storms, including aurora theory and morphology, structure of the magnetosphere, and models of magnetosphere substorms. The selection is a valuable source of data for researchers wanting to explore geomagnetism. Covers upper atmosphere physics, the magnetosphere, and solar wind Expert team of contributors from all over the world The fourth volume of the only comprehensive treatise covering all aspects of geomagnetism




Physics of the Magnetosphere


Book Description

This monograph is based upon the proceedings of the Summer Institute, Physics of the Magnetosphere, held on the Boston College campus, lune 19-28, 1967. The pro gram consisted of invited speakers selected by the Editors. An attempt was made to provide comprehensive treatment of all topics of primary relevance to magneto spheric physics, but, of course, some areas received greater coverage than others. The first portion of the conference consisted of tutoriallectures, four each, by five distinguished scientists, and these are presented in Part I of the monograph. The artides appearing in Part I were prepared by the Editors from tapes of the actual lectures. Preliminary manuscripts were prepared and each tutoriallecturer was given the opportunity to make changes or improvements that were incorporated into the final manuscript. H. R. Radoski prepared the lectures of Professor Helliwell; 1. F. McClay prepared the lectures of Professor Dessler and the first two of Professor Dungey; and the remaining lectures of Professors Dungey, Parker, and Van Allen were prepared by me. An effort was made for the most part to write each manuscript in the style of the lectures, but the incongruities of spoken English and the number of scribes in the kitchen undoubtedly limited our success. Everyone knows that English is written far better than it is spoken, although for some reason the spoken word is more dear.







Theory of Magnetospheric Hydromagnetic Waves Excited by Energetic Ring-current Protons


Book Description

A general theoretical formulation, allowing finite ion Larmor radii, general magnetic field geometries and plasma equilibria, has been developed to investigate excitations of magnetohydrodynamic (MHD) Alfven waves within the earth's magnetosphere by the storm-time energetic ring-current protons. In particular, it is found that for adiabatically injected protons, various predicted instability properties are consistent with satellite observations. 8 refs.