Offshore Wind Balance-of-System Cost Modeling


Book Description

Offshore wind balance-of-system (BOS) costs contribute up to 70% of installed capital costs. Thus, it is imperative to understand the impact of these costs on project economics as well as potential cost trends for new offshore wind technology developments. As a result, the National Renewable Energy Laboratory (NREL) developed and recently updated a BOS techno-economic model using project cost estimates created from wind energy industry sources.




Offshore Wind Balance-of-System Cost Modeling


Book Description

Offshore wind balance-of-system (BOS) costs contribute up to 70% of installed capital costs. Thus, it is imperative to understand the impact of these costs on project economics as well as potential cost trends for new offshore wind technology developments. As a result, the National Renewable Energy Laboratory (NREL) developed and recently updated a BOS techno-economic model using project cost estimates created from wind energy industry sources.







NREL Offshore Balance-of-System Model


Book Description

The U.S. Department of Energy (DOE) has investigated the potential for 20% of nationwide electricity demand to be generated from wind by 2030 and, more recently, 35% by 2050. Achieving this level of wind power generation may require the development and deployment of offshore wind technologies. DOE (2008) has indicated that reaching these 2030 and 2050 scenarios could result in approximately 10% and 20%, respectively, of wind energy generation to come from offshore resources. By the end of 2013, 6.5 gigawatts of offshore wind were installed globally. The first U.S. project, the Block Island Wind Farm off the coast of Rhode Island, has recently begun operations. One of the major reasons that offshore wind development in the United States is lagging behind global trends is the high capital expenditures required. An understanding of the costs and associated drivers of building a commercial-scale offshore wind plant in the United States will inform future research and help U.S. investors feel more confident in offshore wind development. In an effort to explain these costs, the National Renewable Energy Laboratory has developed the Offshore Balance-of-System model.




Offshore Wind Energy Cost Modeling


Book Description

Offshore wind energy is one of the most promising and fastest growing alternative energy sources in the world. Offshore Wind Energy Cost Modeling provides a methodological framework to assess installation and decommissioning costs, and using examples from the European experience, provides a broad review of existing processes and systems used in the offshore wind industry. Offshore Wind Energy Cost Modeling provides a step-by-step guide to modeling costs over four sections. These sections cover: ·Background and introductory material, ·Installation processes and vessel requirements, ·Installation cost estimation, and ·Decommissioning methods and cost estimation. This self-contained and detailed treatment of the key principles in offshore wind development is supported throughout by visual aids and data tables. Offshore Wind Energy Cost Modeling is a key resource for anyone interested in the offshore wind industry, particularly those interested in the technical and economic aspects of installation and decommissioning. The book provides a reliable point of reference for industry practitioners and policy makers developing generalizable installation or decommissioning cost estimates.




NREL's Balance-of-System Cost Model for Land-Based Wind


Book Description

NREL's Land-based Balance of System Systems Engineering (LandBOSSE) model is a tool for modeling the balance of system (BOS) costs of land-based wind plants. BOS costs currently account for approximately 30% of the capital expenditures needed to install a land-based wind plant and include all costs associated with installing a wind plant, such as permitting, labor, material, and equipment costs associated with site preparation, foundation construction, electrical infrastructure, and tower installation. NREL developed LandBOSSE after identifying a need for a hybrid of process-based and empirically derived model that can provide flexibility for assessing wind plant BOS costs at a system level. NREL's prior BOS models have relied on empirical fits of legacy industry data, which limit their predictive ability. LandBOSSE, however, was designed to help users explore tradeoffs between innovative design scenarios while balancing the level of detail and speed required for model execution. The model was developed using a hybrid of process-based and empirically derived methods to create a modular model design that will allow for updates as wind energy technology evolves. The goal of LandBOSSE is to allow researchers, analysts, wind power developers, government agencies, and the public to explore how BOS may vary for different wind plant designs. This report summarizes the approach, methods, and equations used to develop LandBOSSE Version 2.1 (hereafter referred to as LandBOSSE 2.1). Future versions of the model may incorporate additional process-based capabilities or modify calculations within the code. Please refer to the GitHub repository at https://github.com/WISDEM/LandBOSSE for the most up-to-date version of the software documentation and code.




Floating Offshore Wind Energy


Book Description

This book provides a state-of-the-art review of floating offshore wind turbines (FOWT). It offers developers a global perspective on floating offshore wind energy conversion technology, documenting the key challenges and practical solutions that this new industry has found to date. Drawing on a wide network of experts, it reviews the conception, early design stages, load & structural analysis and the construction of FOWT. It also presents and discusses data from pioneering projects. Written by experienced professionals from a mix of academia and industry, the content is both practical and visionary. As one of the first titles dedicated to FOWT, it is a must-have for anyone interested in offshore renewable energy conversion technologies.




Floating Offshore Wind Farms


Book Description

This book provides an overview of floating offshore wind farms and focuses on the economic aspects of this renewable-energy technology. It presents economic maps demonstrating the main costs, and explores various important aspects of floating offshore wind farms. It examines topics including offshore wind turbines, floating offshore wind platforms, mooring and anchoring, as well as offshore electrical systems. It is a particularly useful resource in light of the fact that most water masses are deep and therefore not suitable for fixed offshore wind farms. A valuable reference work for students and researchers interested in naval and ocean engineering and economics, this book provides a new perspective on floating offshore wind farms, and makes a useful contribution to the existing literature.




Technological Learning in the Transition to a Low-Carbon Energy System


Book Description

Technological Learning in the Transition to a Low-Carbon Energy System: Conceptual Issues, Empirical Findings, and Use in Energy Modeling quantifies key trends and drivers of energy technologies deployed in the energy transition. It uses the experience curve tool to show how future cost reductions and cumulative deployment of these technologies may shape the future mix of the electricity, heat and transport sectors. The book explores experience curves in detail, including possible pitfalls, and demonstrates how to quantify the 'quality' of experience curves. It discusses how this tool is implemented in models and addresses methodological challenges and solutions. For each technology, current market trends, past cost reductions and underlying drivers, available experience curves, and future prospects are considered. Electricity, heat and transport sector models are explored in-depth to show how the future deployment of these technologies--and their associated costs--determine whether ambitious decarbonization climate targets can be reached - and at what costs. The book also addresses lessons and recommendations for policymakers, industry and academics, including key technologies requiring further policy support, and what scientific knowledge gaps remain for future research. Provides a comprehensive overview of trends and drivers for major energy technologies expected to play a role in the energy transition Delivers data on cost trends, helping readers gain insights on how competitive energy technologies may become, and why Reviews the use of learning curves in environmental impacts for lifecycle assessments and energy modeling Features social learning for cost modeling and technology diffusion, including where consumer preferences play a major role




Offshore Wind Plant Balance-of-Station Cost Drivers and Sensitivities (Poster)


Book Description

With Balance of System (BOS) costs contributing up to 70% of the installed capital cost, it is fundamental to understanding the BOS costs for offshore wind projects as well as potential cost trends for larger offshore turbines. NREL developed a BOS model using project cost estimates developed by GL Garrad Hassan. Aspects of BOS covered include engineering and permitting, ports and staging,transportation and installation, vessels, foundations, and electrical. The data introduce new scaling relationships for each BOS component to estimate cost as a function of turbine parameters and size, project parameters and size, and soil type. Based on the new BOS model, an analysis to understand the non-turbine costs associated with offshore turbine sizes ranging from 3 MW to 6 MW andoffshore wind plant sizes ranging from 100 MW to 1000 MW has been conducted. This analysis establishes a more robust baseline cost estimate, identifies the largest cost components of offshore wind project BOS, and explores the sensitivity of the levelized cost of energy to permutations in each BOS cost element. This presentation shows results from the model that illustrates the potential impactof turbine size and project size on the cost of energy from US offshore wind plants.