Oxygen-free Propane Oxidative Dehydrogenation Over Vanadium Oxide Catalysts


Book Description

Propane conversion to propylene has been the subject of intensive researches. This is due to the increasing demand for propylene. Current propylene production processes suffer from several limitations. Oxidative dehydrogenation (ODH) is a promising alternative technology for propylene production overcoming the drawbacks of current processes. However, selectivity control in ODH is still a challenge preventing it from an industrial application. This is due to the formation of undesired carbon oxides. Thus, the development of a selective catalyst is crucial for the commercialization of ODH. Vanadium oxide catalysts have been proposed as the most active and selective catalyst for propane ODH. Moreover, new reactor concepts such as fluidized-bed might also help to make the ODH a feasible alternative for olefins productionas, offering some outstanding advantages in comparison to conventional reactors. This dissertation provides fundamental understanding of structure-reactivity relationship of vanadium oxide catalyst for propane ODH in a fluidized-bed reactor using the lattice oxygen of vanadium oxide catalysts in the absence of gas-phase oxygen. Supported vanadium oxide catalysts with different vanadium loadings (5-10 wt %) supported on?-Al2O3 is used. The prepared catalysts are characterized using several techniques such as BET surface area, H2-TPR, NH3-TPD, O2 Chemisorption, Laser Raman Spectroscopy, Pyridine FTIR and XRD. Characterization of the catalysts reveals that monomeric VOx species are predominant at low vanadium loadings while polymeric VOx species increase with higher loadings until monolayer surface coverage is reached. Moreover, the catalysts display moderated acidity compared to that of the bare alumina due to the relative increase in the number of Brønsted acid sites. Successive-injections propane ODH experiments in the CREC Riser Simulator over partially reduced catalyst show good propane conversions (12%-15%) and promising propylene selectivity (68-86%) at 475-550 0C. Product selectivities are found to augment with the catalyst's degree of reduction suggesting that a certain degree of catalyst reduction is required for better propylene selectivity. Compared to average propylene yields of 5% and 15% obtained in FCC and steam cracking technologies, respectively, promising value of 7% was obtained in the present propane ODH study over vanadium oxide catalyst and under oxygen free conditions. Such result would encourage further investigation of propane ODH in the absence of molecular gas oxygen as promising alternative/supplementary technology for the production of propylene. A kinetic model relating reaction rate to the catalyst's degree of oxidation is proposed. Non- linear regression leads to model parameters with low confidence intervals, suggesting the adequacy of the proposed model in predicting the ODH reaction under the selected reaction conditions.







Structure and Reactivity of Metals in Zeolite Materials


Book Description

This volume provides the reader with the most up-to-date and relevant knowledge on the reactivity of metals located in zeolite materials, either in framework or extra-framework positions, and the way it is connected with the nature of the chemical environment provided by the host. Since the first report of the isomorphous substitution of titanium in the framework of zeolites giving rise to materials with unusual catalytic properties, the incorporation of many other metals have been investigated with the aim for developing catalysts with improved performance in different reactions. The continuous expansion of the field, both in the variety of metals and zeolite structures, has been accompanied by an increasing focus on the relationship between the reactivity of metal centers and their unique chemical environment. The concepts covered in this volume are of interest to people working in the field of inorganic and physical chemistry, catalysis and chemical engineering, but also for those more interested in theoretical approaches to chemical reactivity. In particular the volume is useful to postgraduate students conducting research in the design, synthesis and catalytic performance of metal-containing zeolites in both academic and application contexts.







Catalysis by Unique Metal Ion Structures in Solid Matrices


Book Description

Atomically dispersed metal cations and small polyatomic cationic structures co-ordinated to the surface of porous matrices exhibit different properties from the same cationic species contained in a bulk oxide or supported on amorphous carriers. This subject is treated to an extensive review, showing how an understanding of it is essential to the development of a new generation of solid catalysts. There are also exciting opportunities to shape the catalytic properties of the transition metal cations in microporous and mesoporous matrices. The book covers both theoretical and experimental aspects, including the distribution of framework Al atoms in Si-rich zeolites, distribution and siting of charge-exchanged metal cations, electronic, adsorptive and catalytic properties of metal cations, and correlation of metal cation structure and siting with catalytic activity.




Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis


Book Description

The catalytic epoxidation of olefins plays an important role in the industrial production of several commodity compounds, as well as in the synthesis of many intermediates, fine chemicals, and pharmaceuticals. The scale of production ranges from millions of tons per year to a few grams per year. The diversity of catalysts is large and encompasses all the known categories of catalyst type: homogeneous, heterogeneous, and biological. This book summarizes the current status in these fields concentrating on rates, kinetics, and reaction mechanisms, but also covers broad topics including modeling, computational simulation, process concepts, spectroscopy and new catalyst development. The similarities and distinctions between the different reaction systems are compared, and the latest advances are described. - Comprehensive listing of epoxide products - Broad comparison of turnover frequencies of homogeneous, hetergeneous, main-group, biomimetic and biological catalysts - Analysis of the general strengths and weaknesses of varied catalytic systems - Detailed description of the mechanisms of reaction for classical and emerging catalysts







Catalysts in Petroleum Refining and Petrochemical Industries 1995


Book Description

Catalysis plays an increasingly critical role in modern petroleum refining and basic petrochemical industries as market demands for and specifications of petroleum and petrochemical products are continuously changing. As we enter the 21st century, new challenges for catalysis science and technology are anticipated in almost every field. Particularly, better utilization of petroleum resources and demands for cleaner transportation fuels are major items. It was against this background that the 2nd International Conference on Catalysts in Petroleum Refining and Petrochemical Industries was organized. The conference was attended by around 300 specialists in the catalysis field from both academia and industry from over 30 countries. It provided a forum for the exchange of ideas between scientists and engineers from the region with their counterparts from industrialized countries.The papers from the conference, which were carefully selected from around 100 submissions, were refereed in terms of scientific and technical content and format in accordance with internationally accepted standards. They comprise a mix of reviews providing an overview of selected areas, original fundamental research results, and industrial experiences.




Third World Congress on Oxidation Catalysis


Book Description

The overall theme of the 3rd World Congress is "Atom Efficient Catalytic Oxidations for Global Technologies". This theme was chosen to stimulate the participants to report their findings with an emphasis on conserving valuable material in their catalytic transformations, as well as conserving energy, in an environmentally responsible manner. Progress towards this stated goal is substantial as evidenced by the tremendous response of the community in their participation of quality publications complied in these Proceedings of the Congress.The subjects presented span a wide range of oxidation reactions and catalysts. These include the currently important area of lower alkane oxidation to the corresponding olefins, unsaturated aldehydes, acids and nitriles.The four featured lectures and seven plenary lectures constitute the general background and overview of the subject matter at hand. The 104 contributed papers and 13 poster manuscripts, summarized in this compendium, probe new avenues to achieve catalytically efficient oxidation reactions for the future needs of mankind in a global environment.