Particle Dispersion in Isotropic Turbulence and Unsteady Particle Dynamics at Finite Reynolds Number


Book Description

A solution to particle dispersion in an isotropic turbulence under Stokes drag, Basset force and gravitational force is obtained in closed form using the independence approximation. The Basset force has no effect on the fluid velocity structure seen by the particles or the long-time particle diffusivities. It does affect the intensities of particle motion for particles with large settling rate and with response time comparable to the turbulence integral time scale. A solution for particles dispersion in isotropic turbulence with non-Stokesian drag and gravitational force is obtained. The time constants of the particle fluctuation in the directions parallel and perpendicular to the gravity are anisotropic. Turbulence increases particle response time constants and reduces settling velocity. Influence of the nonlinear drag, particle response time constants and settling rate on particle dispersion are investigated. Monte-Carlo simulations are performed for particle motions in an isotropic turbulence with non-Stokesian drag. Pseudo-turbulence is generated using random Fourier modes representation. Statistical averages are obtained from more than 5000 particles. The results of the simulation validate the preceeding analysis in the non-Stokesian drag range. The influence of turbulence structure on the dispersions of fluid and particle is examined. In addition to the integral length and time scales, the functional form of the energy spectrum is also important in describing the dispersions of both fluid and particles. Numerical solution for unsteady flow over a sphere indicates that the added-mass force at finite Reynolds number is the same as in the creeping flow and the potential flow. The classical Stokes solution is not valid at small frequency, $omega$, and the corresponding Basset force is proportional to $omega$, instead of $sqrt{omega}$. The Basset-force term has a kernel decays faster than (t- $tau$)$sp{-1/2}$ at large time. The use of the steady state drag coefficient with the instantaneous velocity is justified to approximate the quasi-steady drag on particles. Limiting behavior of the unsteady drag on a sphere at small frequency and low Reynolds number is obtained using matched asymptotic expansions. The modified Basset-force term at finite Re is constructed. It has a kernel decays as (t- $tau$)$sp{-2}$ at large times.




Collective Dynamics of Particles


Book Description

The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such methods to dispersed multiphase flows.




The dynamics of finite-size settling particles


Book Description

This book contributes to the fundamental understanding of the physical mechanisms that take place in pseudo turbulent particulate flows. In the present work we have considered the sedimentation of large numbers of spherical rigid particles in an initially quiescent flow field. We have performed direct numerical simulations employing an immersed boundary method for the representation of the fluid-solid interface. The results evidence that depending on the particle settling regime (i.e. Galileo number and particle-to-fluid density ratio) the particles may exhibit strong inhomogeneous spatial distribution. It is found that the particles are preferentially located in regions with downward fluid motion. The particles inside clusters experience larger settling velocities than the average. The flow in all flow cases is observed to exhibit characteristic features of pseudo-turbulence. The particle-induced flow field is further found to be highly anisotropic with dominant vertical components. The results indicate that, in the present flow configurations, the collective and mobility effects play significant role for the particle and fluid motion.




Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration


Book Description

The book presents an up-to-date review of turbulent two-phase flows with the dispersed phase, with an emphasis on the dynamics in the near-wall region. New insights to the flow physics are provided by direct numerical simuation and by fine experimental techniques. Also included are models of particle dynamics in wall-bounded turbulent flows, and a description of particle surface interactions including muti-layer deposition and re-suspension.







Particle-Laden Flow


Book Description

This book contains a selection of the papers that were presented at the EUROMECH colloquium on particle-laden flow held at the University of Twente in 2006. The multiscale nature of this challenging field motivated the calling of the colloquium and reflects the central importance that the dispersion of particles in a flow has in various geophysical and environmental problems. The spreading of aerosols and soot in the air, the growth and dispersion of plankton blooms in seas and oceans, or the transport of sediment in rivers, estuaries and coastal regions are striking examples.










Particles in Turbulent Flows


Book Description

The only work available to treat the theory of turbulent flow with suspended particles, this book also includes a section on simulation methods, comparing the model results obtained with the PDF method to those obtained with other techniques, such as DNS, LES and RANS. Written by experienced scientists with background in oil and gas processing, this book is applicable to a wide range of industries -- from the petrol industry and industrial chemistry to food and water processing.