Performance Study of Photocatalytic Oxidation for the Abatement of Volatile Organic Compounds from Indoor Air Environments


Book Description

Many commercial systems based in the photocatalytic technology have reached the market recently in order to address the growing demand for improve poor indoor air qualities. The present work deals with the development of a new methodology in order to evaluate the efficiency of this process. For the study of photocatalytic oxidation for indoor air applications, an experimental set-up was designed and two analytical tools (ATD-GC-MS and GC-PDHID) were developed. The performance of the photocatalytic treatment of 2-propanol and toluene at indoor air concentrations levels (ppbv) were realised. The influence of several parameters and their interactions effects on the conversion, by-product formation and mineralization to CO2 were established.




Photocatalytic Oxidation of Volatile Organic Compounds for Indoor Air Applications


Book Description

Photocatalytic oxidation (PCO) is a promising and emerging technique in controlling indoor air contaminants, including volatile organic compounds (VOCs). It has broad air cleaning and deodorization applications in indoor environments ranging from residential and office buildings to healthcare and nursing facilities as well as spacecrafts, aircraft cabins and clean rooms in the agricultural and food industry. Numerous studies have been conducted to improve the effectiveness and performance of this technology. These include development of new configurations, energy-efficient catalysts and other parameters to control the process. However, only limited research has been conducted under realistic indoor environmental conditions. One of the most recent developments in photocatalysis is the synthesis of 2% C- and V-doped TiO[subscript]2, which is active under both dark and visible light conditions. However, like most research conducted in photocatalysis, the study on the reactivity of this catalyst has been performed only under laboratory conditions. This study investigated the possible application of the novel C and V co-doped TiO[subscript]2 in cleaning indoor air. Mathematical modeling and simulation techniques were employed to assess the potential use of some of the promising systems that utilize the catalyst (i.e., packed bed and thin films) as well as the effect of mass transfer limitations in the degradation of acetaldehyde, one of the VOCs that can be found in offices, residential buildings and other facilities.




Photocatalysis for Environmental Remediation and Energy Production


Book Description

This book explores the modification of various synthesis processes to enhance the photocatalytic activity in varied applications in the fields of environmental remediation and energy production. It outlines the enhancement of photocatalytic activity via alloys synthesis, thin film coatings, electro-spun nanofibers and 3D printed photocatalysts. The book further states the diverse applications of materials for degrading organic pollutants and airborne pathogens, improving indoor air quality and as a potential antimicrobial agent. The application of photocatalysts in green organic synthesis, biomedical field and in hydrogen evolution are also presented in the book. It covers theoretical studies of photocatalytic material and conversion of CO2 to value added chemical feed stocks. The book is of relevance to researchers in academia and industry alike in the fields of material science, environmental science & technology, photocatalytic applications and in energy generation and conversion.




Evaluation of the Performance of Photocatalytic Systems for the Treatment of Indoor Air in Medical Environments


Book Description

Photocatalytic oxidation (PCO) is an advanced air cleaning technology that is used asa means to improve air quality in indoor environments and could potentially be used inthe operating rooms (OR). In hospitals, operating rooms (ORs) are very demanding interms of the indoor air quality (IAQ) and require systems that minimize the concentrations of pollutants. In this work, the fate of two OR pollutants acrylonitrile (chemical found insurgical smoke) and isoflurane (anesthetic gas) when they go through a PCO device was investigated. Firstly, a parametric evaluation on the degradation of isoflurane and acrylonitrile by studying the influence of air velocity, light intensity, the change in media geometry, initial pollutant concentration, presence of chemical co-pollutants, presence of particles (bioaerosols) and relative humidity on their degradation efficiencies is performed. Secondly the safety of the use of PCO for the degradation of isoflurane and acrylonitrile through the identification of possible intermediates formed during their degradation is evaluated. The experiments were conducted in a closed loop reactor which has been designed to study low concentration air pollutants and has also been recently modeled. Finally, to better understand how the change in media geometry influenced the degradation efficiency, simulations with ANSYS 14.5 were performed and discussed.




Volatile Organic Compound Removal


Book Description

Volatile Organic Compound Removal: Technologies and Functional Materials for VOC Removal details technologies and materials for the removal of volatile organic compounds (VOCs) from polluted air, covering not only the fundamental mechanisms, processes, and designs of the latest VOC abatement technologies, but also the characteristics and applications of advanced functional materials for VOC removal. The first half of this book centers on VOC abatement technologies including catalytic degradation, thermal oxidation, membrane separation, adsorption, absorption, and condensation, whereas the second half focuses on the applications of functional materials, especially novel nanomaterials, in VOC removal. Volatile Organic Compound Removal: Technologies and Functional Materials for VOC Removal is unique in covering both the fundamental mechanisms and practical applications of VOC abatement technologies, as well as focusing on the preparation, characterization, and application of novel functional materials for VOC removal. - Details both the technologies and the functional materials possible for use in destructive and non-destructive removal of VOCs - Covers both sustainability-related issues and nanotechnology applications for VOC removal - Includes detailed case studies in appropriate chapters




Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) ForIndoor Air Applications


Book Description

Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide and 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the most reactive chemical classes with conversion efficiencies often near or above 70% at the low flow rate and near 40% at the high flow rate. Ketones and terpene hydrocarbons were somewhat less reactive. The relative VOC conversion rates are generally favorable for treatment of indoor air since many contemporary products used in buildings employ oxygenated solvents. A commercial UVPCO device likely would be installed in the supply air stream of a building and operated to treat both outdoor and recirculated air. Assuming a recirculation rate comparable to three times the normal outdoor air supply rate, simple mass-balance modeling suggests that a device with similar characteristics to the study unit has sufficient conversion efficiencies for most VOCs to compensate for a 50% reduction in outdoor air supply without substantially impacting indoor VOC concentrations. Formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid were produced in these experiments as reaction byproducts. No other significant byproducts were observed. A coupled steady-state mass balance model is presented and applied to VOC data from a study of a single office building. For the operating assumptions described above, the model estimated a three-fold increase in indoor formaldehyde and acetaldehyde concentrations. The outcome of this limited assessment suggests that evaluation of the potential effects of the operation of a UVPCO device on indoor concentrations of these contaminants is warranted. Other suggested studies include determining VOC conversion efficiencies in actual buildings and evaluating changes in VOC conversion efficiency as monoliths age with long-term operation.




Volatile Organic Compounds By-products Generation in Photocatalytic Oxidation Reactor


Book Description

The presence of volatile organic compounds (VOCs) in indoor air is inevitable. Their adverse effect on human health has encouraged researchers to develop various technologies for air pollution remediation. Photocatalytic oxidation (PCO) has been regarded as a promising and emerging technique for air purification and extensively investigated in the last two decades to characterize and improve the effectiveness and performance of this technology. In addition, the development of appropriate models can enhance the understanding of reactor performance and the evaluation of intrinsic kinetic parameters that enable the scale-up or re-design of more efficient large-scale photocatalytic reactors. This research works on mathematical modeling of gas phase photocatalytic reactors and analyses different key factors that can enhance pollutants decomposition. At the first step, a one-dimensional time-dependent mathematical model for continuous flow UV-PCO reactor has been developed. In this model, transfer of pollutants by advection and dispersion in bulk phase incorporates with the reaction rate based on the extended Langmuir Hinshelwood model in the catalyst phase. CFD modeling was also used to determine the flow distribution in the reactor at various airflow rates. Moreover, the light intensity distribution on the photocatalyst surface was simulated using the linear source spherical emission model. A dimensionless form of the model was then proposed to generalize the result for any scale. The proposed model was validated first by comparing with predictions of other models (inter-model comparison) and then by experimental data from two different scales (pilot and bench) of UV-PCO reactors. Furthermore, a sensitivity analysis using dimensionless parameters was conducted to find the controlling step in the PCO process. To validate the model, acetone, MEK, and toluene were tested in the UV-PCO reactor with a commercial PCO filter (TiO2 coated on silica fiber felts) at various operating conditions, such as concentration, relative humidity, irradiance and air velocity. The main issue for applying PCO technology in the indoor environment is the generation of hazardous by-products. The effect of by-products formation was usually ignored in former modeling studies. The next effort was to improve the model and build a comprehensive one to consider by-products generation in the UV-PCO reactor. To achieve this goal, a possible reaction pathway for degradation of each challenge compound was proposed based on identified by-products in analytical methods (GC-MS and HPLC). Different possible reaction rate scenarios were evaluated to find the best expression fitted to experimental data at the steady-state condition. The obtained reaction coefficients were then used to validate the model under various operating conditions. Finally, the Health Risk Index was used to investigate the implications of generated by-products on human health under varying operating conditions. The results indicated that the proposed model has a great potential to simulate the behavior of UV-PCO reactor in a real application.




EPA Publications Bibliography


Book Description




Nanomaterials for Air Remediation


Book Description

Nanomaterials for Air Remediation provides a comprehensive description of basic knowledge and current research progress in the field of air treatment using nanomaterials. The book explores how nanomaterials are used in various air remediation techniques, including advanced oxidation processes, biological processes, and filtration. It also covers their combined use as nanocatalysts, nanoantibiotics, nanoadsorbents, nanocontainers, nanofiltrations and nanosensors. Major challenges to using nanomaterials for improving air quality on a mass scale, both practical and regulatory, are also presented. This is an important resource for materials scientists and environmental engineers who are looking to understand how nanotechnology is used to enhance air quality. - Includes coverage of a wide range of nanomaterials, from biochemical to chemical materials, and nanomaterials supported photocatalysts - Discusses how the properties of nanomaterials are being used to make more efficient air purification systems and products - Assesses the practical and regulatory challenges of using different types of nanomaterials for air remediation




Modification of Titanium Dioxide for Photocatalytic Degradation of Indoor Volatile Organic Compounds


Book Description

The indoor air quality (IAQ) concern has risen since people spend most of their time (>90%) in indoor environments. Volatile organic compounds (VOCs) are categorized as a major group of gas pollutants. Indoor VOCs, known as hazardous compounds with several proven adverse health effects. Among various purification techniques, a heterogeneous photocatalytic oxidation process (PCO) is a promising technology for removing indoor VOC contaminants. Titanium dioxide (TiO2) is the leading candidate for PCO given its unique properties. However, no TiO2-based photocatalysts completely satisfy all practical requirements, considering the photoexcited charge carriers' short lifetime and a wide band gap requiring ultraviolet (UV) radiation. Moreover, the application of PCO for VOCs degradation is greatly hindered at high humidity levels. Herein, TiO2 modification techniques that include approaches for overcoming the inherent TiO2 limitations and improving the photocatalytic degradation of VOCs are studied. In this research, strategies for improving TiO2 photocatalyst activities by doping with different metal and/or non-metal ions as well as surface modification have been examined. Accordingly, the adsorption capacity and photocatalytic activity of P25 and surface fluorinated P25 coated on nickel foam were evaluated for VOCs removal. In addition, the photoactivity of visible-light-driven photocatalysts including; anatase/rutile carbon-doped P25, anatase/brookite cerium-doped TiO2, and anatase/brookite iron-doped TiO2 coated on nickel foam were evaluated for degradation of VOCs under both UV and visible light irradiation. Surface fluorination was then applied to reduce the surface hydrophilicity of Ce-TiO2 and Fe-TiO2 photocatalysts with the optimum Ce and Fe contents. Notably, their photocatalytic performance was investigated in continuous flow mode-of-operation reactors with small residence time, different relative humidity levels, and low-level inlet contaminant concentration. These techniques can improve PCO performance through the following mechanisms: i) by introducing an electron capturing level in the band gap that would generate some defects in the TiO2 lattice and help capture charge carriers and can also be excited under visible irradiation; ii) by slowing down the charge carrier recombination rate and increasing VOCs degradation; and iii) by reducing the surface hydrophilicity, which increases VOCs' adsorption capacity at high humid conditions.