Crude Oil Fouling


Book Description

With production from unconventional rigs continuing to escalate and refineries grappling with the challenges of shale and heavier oil feedstocks, petroleum engineers and refinery managers must ensure that equipment used with today's crude oil is protected from fouling deposits Crude Oil Fouling addresses this overarching challenge for the petroleum community with clear explanations on what causes fouling, current models and new approaches to evaluate and study the formation of deposits, and how today's models could be applied from lab experiment to onsite field usability for not just the refinery, but for the rig, platform, or pipeline. Crude Oil Fouling is a must-have reference for every petroleum engineer's library that gives the basic framework needed to analyze, model, and integrate the best fouling strategies and operations for crude oil systems. - Defines the most critical variables and events that cause fouling - Explains the consequences of fouling and its impact on operations, safety, and economics - Provides the technical models available to better predict and eliminate the potential for fouling in any crude system




Fouling in Refineries


Book Description

Fouling in Refineries is an important and ongoing problem that directly affects energy efficiency resulting in increased costs, production losses, and even unit shutdown, requiring costly expenditures to clean up equipment and return capacity to positive levels. This text addresses this common challenge for the hydrocarbon processing community within each unit of the refinery. As refineries today face a greater challenge of accepting harder to process heavier crudes and the ongoing flow of the lighter shale oil feedstocks, resulting in bigger challenges to balance product stability within their process equipment, this text seeks to inform all relative refinery personnel on how to monitor fouling, characterize the deposits, and follow all available treatments. With basic modeling and chemistry of fouling and each unit covered, users will learn how to operate at maximum production rates and elongate the efficiency of their refinery's capacity. - Presents an understanding of the breakdown of fouling per refinery unit, including distillation and coking units - Provides all the factors, crude types, and refining blends that cause fouling, especially the unconventional feedstocks and high acid crudes used today - Helps users develop an analysis-based treatment and control strategy that empowers them to operate refinery equipment at a level that prevents fouling from occurring




Fouling of Heat Exchangers


Book Description

This unique and comprehensive text considers all aspects of heat exchanger fouling from the basic science of how surfaces become fouled to very practical ways of mitigating the problem and from mathematical modelling of different fouling mechanisms to practical methods of heat exchanger cleaning. The problems that restrict the efficient operation of equipment are described and the costs, some of them hidden costs, that are associated with the fouling of heat exchangers are discussed. Some simple concepts and models of the fouling processes are presented as part of the introduction to the subject.Advice on the selection, design, installation and commissioning of heat exchangers to minimise fouling is given. A large part of the text is devoted to the use of chemical and other additives to reduce or eliminate the problem of fouling. Another large section is designed to give information on both on-line and off-line cleaning of heat exchangers. One of the difficulties faced by designers and operators of heat exchangers is anticipating the likely extent of fouling problems to be encountered with different flow streams. Another large section addresses the question and describes methods that have been used in attempting to define fouling potential. The book concludes with a chapter on how fouling information can be obtained using plant data, field tests and laboratory studies.







Quantifying Petroleum Fouling of Refinery Heat Exchangers


Book Description

Improvement to TEMA recommendations would provide engineers with greater confidence in the prediction of rates of fouling for various heat exchangers and heat exchanger types. This would allow heat exchangers to be designed to optimum specifications, resulting in enormous savings in capital and operating costs. In this work, optical and acoustic scattering techniques have been used in the development of two new oil stability tests. Interpretation of the scattered signals yields information about the state of aggregation of the asphaltene within the oil sample. Since the aggregation of asphaltene is known to play a key role in the fouling of refinery heat exchanger equipment, these new test provide information which is valuable, both in the design and in the operation of refinery heat exchangers. In addition, an investigation has been carried out in collaboration with a major international refiner into the use of artificial intelligence to model the fouling of process plant. Although the success of these models varied greatly, the better models were able to predict general trends in fouling rate.




Experimental and Numerical Investigation on Fouling Parameters in a Small-Scale Rotating Unit


Book Description

Fouling, a problem since the first heat exchanger was created, has been the focus of various studies since the 1970s. In particular, crude oil fouling is a costly and problematic type of heat exchanger fouling that occurs in the preheat train to the atmospheric distillation column in petroleum refineries. Previous experiments have been designed to determine the causes of fouling using less than one gallon of crude oil and accumulating test results within a day. These experiments will be the basis of the Rotating Fouling Unit (RFU) at Heat Transfer Research Inc. (HTRI). The RFU focuses on better controlling the shear stress and heat transfer distribution along the surface of the heated test section by analyzing Taylor-Couette flow experiments and using them as a basis to better predict the flow across the heated surface of the test section in the RFU. Additionally, the equations for Taylor-Couette flow are used to verify the 2D flow simulations of the RFU to ensure the accuracy of the results. The design of the RFU incorporates data acquisition with a variety of measurements that will facilitate automatic and accurate data collection, so the results can be easily compared to previous fouling experiments. The RFU will act as a supplement to the High Temperature Fouling Unit (HTFU) at HTRI, and provide data comparable to that of the HTFU in order to better understand crude oil fouling. Computer simulations can accurately predict the shear stress and heat transfer coefficient along the surface of the test probe and help verify the improvements made to the original batch stirred cell designs. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/150955




Fouling Science and Technology


Book Description

The fouling of heat exchangers, reactors and catalysts remains one of the most urgent problems facing the process industries. Over the past ten years there has been limited research and investigation into the underlying mechanisms which give rise to this problem. For convenience, particularly in heat exchanger technology, the mechanisms involved have been subdivided into different subject areas. It is often the situation that individuals or groups of workers have concentra ted efforts in one or two of these specialist areas and there is a need to integrate the ideas across the whole spectrum of the subject. In addition, topics such as adhesion and surface phenomena have not been properly taken into account up till now in the assessment of the fouling processes. For this reason it was considered essential that the recognised experts from around the world, who are actively concerned with research, development and design in the fieId, should meet and exchange ideas and experience. Such a meeting was held at Alvor, Portugal, in May 1987, sponsored by the NATO Advanced St~dy Institutes Programme. In order to obtain a common basis for the work of the Advanced Study Institute, the whole technological field was reviewed right from the basic concepts to the frontiers of present knowledge. Each invited contributor was asked to make an overall presentation covering his or her area of expertise.




Fluid Mechanics, Heat Transfer, and Mass Transfer


Book Description

This broad-based book covers the three major areas of Chemical Engineering. Most of the books in the market involve one of the individual areas, namely, Fluid Mechanics, Heat Transfer or Mass Transfer, rather than all the three. This book presents this material in a single source. This avoids the user having to refer to a number of books to obtain information. Most published books covering all the three areas in a single source emphasize theory rather than practical issues. This book is written with emphasis on practice with brief theoretical concepts in the form of questions and answers, not adopting stereo-typed question-answer approach practiced in certain books in the market, bridging the two areas of theory and practice with respect to the core areas of chemical engineering. Most parts of the book are easily understandable by those who are not experts in the field. Fluid Mechanics chapters include basics on non-Newtonian systems which, for instance find importance in polymer and food processing, flow through piping, flow measurement, pumps, mixing technology and fluidization and two phase flow. For example it covers types of pumps and valves, membranes and areas of their use, different equipment commonly used in chemical industry and their merits and drawbacks. Heat Transfer chapters cover the basics involved in conduction, convection and radiation, with emphasis on insulation, heat exchangers, evaporators, condensers, reboilers and fired heaters. Design methods, performance, operational issues and maintenance problems are highlighted. Topics such as heat pipes, heat pumps, heat tracing, steam traps, refrigeration, cooling of electronic devices, NOx control find place in the book. Mass transfer chapters cover basics such as diffusion, theories, analogies, mass transfer coefficients and mass transfer with chemical reaction, equipment such as tray and packed columns, column internals including structural packings, design, operational and installation issues, drums and separators are discussed in good detail. Absorption, distillation, extraction and leaching with applications and design methods, including emerging practices involving Divided Wall and Petluk column arrangements, multicomponent separations, supercritical solvent extraction find place in the book.




Guide to the Practical Use of Chemicals in Refineries and Pipelines


Book Description

Guide to Practical Use of Chemicals in Refineries and Pipelines delivers a well-rounded collection of content, references, and patents to show all the practical chemical choices available for refinery and pipeline usage, along with their purposes, benefits, and general characteristics. Covering the full spectrum of downstream operations, this reference solves the many problems that engineers and managers currently face, including corrosion, leakage in pipelines, and pretreatment of heavy oil feedstocks, something that is of growing interest with today's unconventional activity. Additional coverage on special refinery additives and justification on why they react the way they do with other chemicals and feedstocks is included, along with a reference list of acronyms and an index of chemicals that will give engineers and managers the opportunity to recognize new chemical solutions that can be used in the downstream industry. - Presents tactics practitioners can use to effectively locate and utilize the right chemical application specific to their refinery or pipeline operation - Includes information on how to safely perform operations with coverage on environmental issues and safety, including waste stream treatment and sulfur removal - Helps readers understand the composition and applications of chemicals used in oil and gas refineries and pipelines, along with where they should be applied, and how their structure interacts when mixed at the refinery