The Verification Challenge


Book Description




Successful Decision-making


Book Description

Unlike other publications on decision making, the book focuses on discovering the problem, analyzing it and on developing and assessing solution options. One whole chapter describes a case study. It illustrates how the proposed decision making procedure is used in practice. Executives get an approach to systematically and successfully solving complex problems.




The Problem of Verification


Book Description




An Assessment of Space Shuttle Flight Software Development Processes


Book Description

Effective software is essential to the success and safety of the Space Shuttle, including its crew and its payloads. The on-board software continually monitors and controls critical systems throughout a Space Shuttle flight. At NASA's request, the committee convened to review the agency's flight software development processes and to recommend a number of ways those processes could be improved. This book, the result of the committee's study, evaluates the safety, oversight, and management functions that are implemented currently in the Space Shuttle program to ensure that the software is of the highest quality possible. Numerous recommendations are made regarding safety and management procedures, and a rationale is offered for continuing the Independent Verification and Validation effort that was instituted after the Challenger Accident.




Program Verification


Book Description

Among the most important problems confronting computer science is that of developing a paradigm appropriate to the discipline. Proponents of formal methods - such as John McCarthy, C.A.R. Hoare, and Edgar Dijkstra - have advanced the position that computing is a mathematical activity and that computer science should model itself after mathematics. Opponents of formal methods - by contrast, suggest that programming is the activity which is fundamental to computer science and that there are important differences that distinguish it from mathematics, which therefore cannot provide a suitable paradigm. Disagreement over the place of formal methods in computer science has recently arisen in the form of renewed interest in the nature and capacity of program verification as a method for establishing the reliability of software systems. A paper that appeared in Communications of the ACM entitled, `Program Verification: The Very Idea', by James H. Fetzer triggered an extended debate that has been discussed in several journals and that has endured for several years, engaging the interest of computer scientists (both theoretical and applied) and of other thinkers from a wide range of backgrounds who want to understand computer science as a domain of inquiry. The editors of this collection have brought together many of the most interesting and important studies that contribute to answering questions about the nature and the limits of computer science. These include early papers advocating the mathematical paradigm by McCarthy, Naur, R. Floyd, and Hoare (in Part I), others that elaborate the paradigm by Hoare, Meyer, Naur, and Scherlis and Scott (in Part II), challenges, limits and alternatives explored by C. Floyd, Smith, Blum, and Naur (in Part III), and recent work focusing on formal verification by DeMillo, Lipton, and Perlis, Fetzer, Cohn, and Colburn (in Part IV). It provides essential resources for further study. This volume will appeal to scientists, philosophers, and laypersons who want to understand the theoretical foundations of computer science and be appropriately positioned to evaluate the scope and limits of the discipline.




Verification and Validation in Scientific Computing


Book Description

Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.







Verification Handbook


Book Description




Verification Methodology Manual for SystemVerilog


Book Description

Offers users the first resource guide that combines both the methodology and basics of SystemVerilog Addresses how all these pieces fit together and how they should be used to verify complex chips rapidly and thoroughly. Unique in its broad coverage of SystemVerilog, advanced functional verification, and the combination of the two.