Index of Conference Proceedings


Book Description













Relaxation of Elementary Excitations


Book Description

This is the Proceedings of the Taniguchi International Symposium on "Relaxation of Elementary Excitations" which was held October 12-16,1979, at Susono-shi (at the foot of f1t. Fuji) in Japan. The pleasant atmosphere of the Symposium is evidenced in the picture of the participants shown on the next page. The purpose of the symposium was to provide an opportunity for a limited number of active researchers to meet and to discuss relaxation processes and related phenomena not only of excitons and phonons in solids but also electronic and vibrational excitations in molecules and biological systems. First, the lattice relaxation, i.e., multi-phonon process, associated with electronic excitation, which plays important roles in self-trapping of an exciton and a particle (electron and hole) and also in degradation of semi conductor lasers, is discussed. Second, this lattice relaxation is studied as the intermediate state interaction in the second-order optical responses, i.e., in connection with the competitive behavior of Raman scattering and luminescence. Third, relaxation mechanisms and relaxation constants are by spectroscopic methods as well as by genuine nonlinear optical determined phenomena. Conversely the relaxation is decisive in coherent nonlinear optical phenomena such as laser, superradiance, and optical bistability. Fourth, the role played by relaxation processes is discussed for optical phenomena in macromolecules and biological system such as photosynthesis.




Handbook of Photovoltaic Science and Engineering


Book Description

The most comprehensive, authoritative and widely cited reference on photovoltaic solar energy Fully revised and updated, the Handbook of Photovoltaic Science and Engineering, Second Edition incorporates the substantial technological advances and research developments in photovoltaics since its previous release. All topics relating to the photovoltaic (PV) industry are discussed with contributions by distinguished international experts in the field. Significant new coverage includes: three completely new chapters and six chapters with new authors device structures, processing, and manufacturing options for the three major thin film PV technologies high performance approaches for multijunction, concentrator, and space applications new types of organic polymer and dye-sensitized solar cells economic analysis of various policy options to stimulate PV growth including effect of public and private investment Detailed treatment covers: scientific basis of the photovoltaic effect and solar cell operation the production of solar silicon and of silicon-based solar cells and modules how choice of semiconductor materials and their production influence costs and performance making measurements on solar cells and modules and how to relate results under standardised test conditions to real outdoor performance photovoltaic system installation and operation of components such as inverters and batteries. architectural applications of building-integrated PV Each chapter is structured to be partially accessible to beginners while providing detailed information of the physics and technology for experts. Encompassing a review of past work and the fundamentals in solar electric science, this is a leading reference and invaluable resource for all practitioners, consultants, researchers and students in the PV industry.




Nanostructure Science and Technology


Book Description

Timely information on scientific and engineering developments occurring in laboratories around the world provides critical input to maintaining the economic and technological strength of the United States. Moreover, sharing this information quickly with other countries can greatly enhance the productivity of scientists and engineers. These are some of the reasons why the National Science Foundation (NSF) has been involved in funding science and technology assessments comparing the United States and foreign countries since the early 1980s. A substantial number of these studies have been conducted by the World Technology Evaluation Center (WTEC) managed by Loyola College through a cooperative agreement with NSF. The National Science and Technology Council (NSTC), Committee on Technology's Interagency Working Group on NanoScience, Engineering and Technology (CT/IWGN) worked with WTEC to develop the scope of this Nanostucture Science and Technology report in an effort to develop a baseline of understanding for how to strategically make Federal nanoscale R&D investments in the coming years. The purpose of the NSTC/WTEC activity is to assess R&D efforts in other countries in specific areas of technology, to compare these efforts and their results to U. S. research in the same areas, and to identify opportunities for international collaboration in precompetitive research. Many U. S. organizations support substantial data gathering and analysis efforts focusing on nations such as Japan. But often the results of these studies are not widely available. At the same time, government and privately sponsored studies that are in the public domain tend to be "input" studies.