Index of Conference Proceedings


Book Description







Relaxation of Elementary Excitations


Book Description

This is the Proceedings of the Taniguchi International Symposium on "Relaxation of Elementary Excitations" which was held October 12-16,1979, at Susono-shi (at the foot of f1t. Fuji) in Japan. The pleasant atmosphere of the Symposium is evidenced in the picture of the participants shown on the next page. The purpose of the symposium was to provide an opportunity for a limited number of active researchers to meet and to discuss relaxation processes and related phenomena not only of excitons and phonons in solids but also electronic and vibrational excitations in molecules and biological systems. First, the lattice relaxation, i.e., multi-phonon process, associated with electronic excitation, which plays important roles in self-trapping of an exciton and a particle (electron and hole) and also in degradation of semi conductor lasers, is discussed. Second, this lattice relaxation is studied as the intermediate state interaction in the second-order optical responses, i.e., in connection with the competitive behavior of Raman scattering and luminescence. Third, relaxation mechanisms and relaxation constants are by spectroscopic methods as well as by genuine nonlinear optical determined phenomena. Conversely the relaxation is decisive in coherent nonlinear optical phenomena such as laser, superradiance, and optical bistability. Fourth, the role played by relaxation processes is discussed for optical phenomena in macromolecules and biological system such as photosynthesis.




Inorganic Phosphors


Book Description

Inorganic Phosphors: Compositions, Preparation and Optical Properties addresses practical and theoretical aspects of inorganic phosphors used in lighting and display applications. Authors Yen and Weber present the synthesis of phosphors in a ...cookbook... style that features nearly 300 ...recipes... using the most up-to-date guidelines and methods




EXAFS and Near Edge Structure


Book Description

The field of X-ray spectroscopy using synchrotron radiation is growing so rapidly and expanding into such different research areas that it is now diffi cult to keep up with the literature. EXAFS and XANES are becoming interdis ciplinary methods used in solid-state physics, biology, and chemistry, and are making impressive contributions to these branches of science. The present book gives a panorama of the research activity in this field. It contains the papers presented at the International Conference on EXAFS and Near Edge Structure held in Frascati, Italy, September 13-17, 1982. This was the first international conference devoted to EXAFS spectroscopy (Extended X-ray Ab sorption Fine Structure) and its applications. The other topic of the con ference was the new XANES (X-ray Absorption Near Edge Structure), which in of experimental and theoretical developments finally appears to have terms left its infancy. The applications of EXAFS concern the determination of local structures in complex systems; we have therefore divided the subject matter into differ ent parts on various types of materials: amorphous metals, glasses, solu tions, biological systems, catalysts, and special crystals such as mixed valence systems and ionic conductors. EXAFS provides unique information for each kind of system, but the analysis of EXAFS data also poses special prob lems in each case. General problems of EXAFS data analysis are discussed, as well as developments in instrumentation for X-ray absorption using syn chrotron radiation and laboratory EXAFS.




Nanostructure Science and Technology


Book Description

Timely information on scientific and engineering developments occurring in laboratories around the world provides critical input to maintaining the economic and technological strength of the United States. Moreover, sharing this information quickly with other countries can greatly enhance the productivity of scientists and engineers. These are some of the reasons why the National Science Foundation (NSF) has been involved in funding science and technology assessments comparing the United States and foreign countries since the early 1980s. A substantial number of these studies have been conducted by the World Technology Evaluation Center (WTEC) managed by Loyola College through a cooperative agreement with NSF. The National Science and Technology Council (NSTC), Committee on Technology's Interagency Working Group on NanoScience, Engineering and Technology (CT/IWGN) worked with WTEC to develop the scope of this Nanostucture Science and Technology report in an effort to develop a baseline of understanding for how to strategically make Federal nanoscale R&D investments in the coming years. The purpose of the NSTC/WTEC activity is to assess R&D efforts in other countries in specific areas of technology, to compare these efforts and their results to U. S. research in the same areas, and to identify opportunities for international collaboration in precompetitive research. Many U. S. organizations support substantial data gathering and analysis efforts focusing on nations such as Japan. But often the results of these studies are not widely available. At the same time, government and privately sponsored studies that are in the public domain tend to be "input" studies.