Protein Structure Prediction : A Practical Approach


Book Description

The three-dimensional structure of proteins is a key factor in their biological activity. There is an increasing need to be able to predict the structure of a protein once its amino-acid sequence is known; this book presents practical methods of achieving that ambitious aim, using the latest computer modelling algorithms. - ;The prediction of the three-dimensional structure of a protein from its sequence is a problem faced by an ever-increasing number of biological scientists as they strive to utilize genetic information. The increasing sizes of the sequence and structural databases, the improvements in computing power, and the deeper understanding of the principles of protein structure have led to major developments in the field in the last few years. This book presents practical computer-based methods using the latest computer modelling algorithms. -




Protein Structure Prediction


Book Description

The number of protein sequences grows each year, yet the number of structures deposited in the Protein Data Bank remains relatively small. The importance of protein structure prediction cannot be overemphasized, and this volume is a timely addition to the literature in this field. Protein Structure Prediction: Methods and Protocols is a departure from the normal Methods in Molecular Biology series format. By its very nature, protein structure prediction demands that there be a greater mix of theoretical and practical aspects than is normally seen in this series. This book is aimed at both the novice and the experienced researcher who wish for detailed inf- mation in the field of protein structure prediction; a major intention here is to include important information that is needed in the day-to-day work of a research scientist, important information that is not always decipherable in scientific literature. Protein Structure Prediction: Methods and Protocols covers the topic of protein structure prediction in an eclectic fashion, detailing aspects of pred- tion that range from sequence analysis (a starting point for many algorithms) to secondary and tertiary methods, on into the prediction of docked complexes (an essential point in order to fully understand biological function). As this volume progresses, the authors contribute their expert knowledge of protein structure prediction to many disciplines, such as the identification of motifs and domains, the comparative modeling of proteins, and ab initio approaches to protein loop, side chain, and protein prediction.




Introduction to Protein Structure Prediction


Book Description

A look at the methods and algorithms used to predict protein structure A thorough knowledge of the function and structure of proteins is critical for the advancement of biology and the life sciences as well as the development of better drugs, higher-yield crops, and even synthetic bio-fuels. To that end, this reference sheds light on the methods used for protein structure prediction and reveals the key applications of modeled structures. This indispensable book covers the applications of modeled protein structures and unravels the relationship between pure sequence information and three-dimensional structure, which continues to be one of the greatest challenges in molecular biology. With this resource, readers will find an all-encompassing examination of the problems, methods, tools, servers, databases, and applications of protein structure prediction and they will acquire unique insight into the future applications of the modeled protein structures. The book begins with a thorough introduction to the protein structure prediction problem and is divided into four themes: a background on structure prediction, the prediction of structural elements, tertiary structure prediction, and functional insights. Within those four sections, the following topics are covered: Databases and resources that are commonly used for protein structure prediction The structure prediction flagship assessment (CASP) and the protein structure initiative (PSI) Definitions of recurring substructures and the computational approaches used for solving sequence problems Difficulties with contact map prediction and how sophisticated machine learning methods can solve those problems Structure prediction methods that rely on homology modeling, threading, and fragment assembly Hybrid methods that achieve high-resolution protein structures Parts of the protein structure that may be conserved and used to interact with other biomolecules How the loop prediction problem can be used for refinement of the modeled structures The computational model that detects the differences between protein structure and its modeled mutant Whether working in the field of bioinformatics or molecular biology research or taking courses in protein modeling, readers will find the content in this book invaluable.




Protein Structure


Book Description




Protein Structure Prediction


Book Description




Protein Structure


Book Description




Protein Structure Prediction


Book Description

This thorough new edition explores web servers and software for protein structure prediction and modeling that are freely available to the academic community. Taking into account the numerous advances in the computational protein structure prediction/modeling field, the book includes residue-contact prediction via deep learning, a wide variety of protein docking models, as well as cryo-electron microscopy (cryo-EM) techniques. Written by renowned experts in the field and for the highly successful Methods in Molecular Biology series, chapters include the kind of key detail and implementation advice necessary for researchers to achieve optimal results in their own work. Authoritative and fully updated, Protein Structure Prediction, Fourth Edition is a practical and immediately useful guide for biology researchers working toward modeling protein structures./div/div/div/div/div/div/div/div/div/div/div/div/div/div/div/div/divdiv




Practical Protein Bioinformatics


Book Description

This book describes more than 60 web-accessible computational tools for protein analysis and is totally practical, with detailed explanations on how to use these tools and interpret their results and minimal mentions to their theoretical basis (only when that is required for making a better use of them). It covers a wide range of tools for dealing with different aspects of proteins, from their sequences, to their three-dimensional structures, and the biological networks they are immersed in. The selection of tools is based on the experience of the authors that lead a protein bioinformatics facility in a large research centre, with the additional constraint that the tools should be accessible through standard web browsers without requiring the local installation of specific software, command-line tools, etc. The web tools covered include those aimed to retrieve protein information, look for similar proteins, generate pair-wise and multiple sequence alignments of protein sequences, work with protein domains and motifs, study the phylogeny of a family of proteins, retrieve, manipulate and visualize protein three-dimensional structures, predict protein structural features as well as whole three-dimensional structures, extract biological information from protein structures, summarize large protein sets, study protein interaction and metabolic networks, etc. The book is associated to a dynamic web site that will reflect changes in the web addresses of the tools, updates of these, etc. It also contains QR codes that can be scanned with any device to direct its browser to the tool web site. This monograph will be most valuable for researchers in experimental labs without specific knowledge on bioinformatics or computing.




Protein Folding in Silico


Book Description

Protein folding is a process by which a protein structure assumes its functional shape of conformation, and has been the subject of research since the publication of the first software tool for protein structure prediction. Protein folding in silico approaches this issue by introducing an ab initio model that attempts to simulate as far as possible the folding process as it takes place in vivo, and attempts to construct a mechanistic model on the basis of the predictions made. The opening chapters discuss the early stage intermediate and late stage intermediate models, followed by a discussion of structural information that affects the interpretation of the folding process. The second half of the book covers a variety of topics including ligand binding site recognition, the "fuzzy oil drop" model and its use in simulation of the polypeptide chain, and misfolded proteins. The book ends with an overview of a number of other ab initio methods for protein structure predictions and some concluding remarks. Discusses a range of ab initio models for protein structure prediction Introduces a unique model based on experimental observations Describes various methods for the quantitative assessment of the presented models from the viewpoint of information theory




Protein Structure


Book Description