Understanding Seismic Anisotropy in Exploration and Exploitation


Book Description

All rock masses are seismically anisotropic, but we generally ignore this in our seismic acquisition, processing, and interpretation. The anisotropy nonetheless does affect our data, in ways that limit the effectiveness with which we can use it, as long as we ignore it. This book, produced for use with the fifth SEG/EAGE Distinguished Instructor Short Course, helps us understand why this inconsistency between reality and practice has been so successful in the past and why it will be less successful in the future as we acquire better seismic data (especially including vector seismic data) and correspondingly higher expectations of it. This book helps us understand how we can modify our practice to more fully realize the potential inherent in our data through algorithms which recognize the fact of seismic anisotropy.




Seismic Anisotropy in the Earth


Book Description




Seismic Signatures and Analysis of Reflection Data in Anisotropic Media


Book Description

Following the breakthrough in the last decade in identifying the key parameters for time and depth imaging in anisotropic media and developing practical methodologies for estimating them from seismic data, Seismic Signatures and Analysis of Reflection Data in Anisotropic Media primarily focuses on the far reaching exploration benefits of anisotropic processing. This volume provides the first comprehensive description of reflection seismic signatures and processing methods in anisotropic media. It identifies the key parameters for time and depth imaging in transversely isotropic media and describes practical methodologies for estimating them from seismic data. Also, it contains a thorough discussion of the important issues of uniqueness and stability of seismic velocity analysis in the presence of anisotropy. The book contains a complete description of anisotropic imaging methods, from the theoretical background to algorithms to implementation issues. Numerous applications to synthetic and field data illustrate the improvements achieved by the anisotropic processing and the possibility of using the estimated anisotropic parameters in lithology discrimination. Focuses on the far reaching exploration benefits of anisotropic processing First comprehensive description of reflection seismic signatures and processing methods in anisotropic media




Seismic Anisotropy in the Earth


Book Description

Structural geologists are well aware of the fact that isotropic rocks are quite exceptional in nature. Whicheverorigin, sedimentary, metamorphicormagmatic, rocks are shaped with a plane of mineral flattening, the foliation in geologists' jargon, and with a line ofmineral elongation, the lineation. Just like a good quarryman, a trained structural geologistwill detectapreferredorientationin an apparently isotropic granite. Preferred mineral orientation and thus structural anisotropy are the rule in nature. Consideringthe largevariationsinelasticcoefficientsofrock-forming minerals, itcould be predicted that, in turn, seismic anisotropy should exist and be important, provided thatdomains withasimilarstructural signatureare largeenough to affectseismic waves. This is why, in 1982 at a conference held in Frankfurt, which was oneofthe fIrst meetings devoted to the subject of seismic anisotropy, I asked Don Anderson the question of why seismologists had not considered earlier in their models the obvious constraint of anisotropy. I still remember Don's answer: "Adolphe, we knew that our isotropic models were not very good but we had no other choice. It is simply that, so far, computerswere not largeenough tointegrate the anisotropy parameter". Changingisotropic glassesfor anisotropic ones permits us to obtain betterand more realistic seismic modelsofthe Earth's interior, but, maybe more importantly, it has, for a seismologist, the farreaching consequenceofsteppinginto the fIeld ofgeodynamics.




Seismic Signatures and Analysis of Reflection Data in Anisotropic Media


Book Description

Provides essential background on anisotropic wave propagation, introduces efficient notation for transversely isotropic (TI) and orthorhombic media, and identifies the key anisotropy parameters for imaging and amplitude analysis. Particular attention is given to moveout analysis and P-wave time-domain processing for VTI and TTI.




Understanding Seismic Anisotropy in Exploration and Exploitation, Second Edition


Book Description

Understanding Seismic Anisotropy in Exploration and Exploitation (second edition) by Leon Thomsen is designed to show you how to recognize the effects of anisotropy in your data and to provide you with the intuitive concepts that you will need to analyze it. Since its original publication in 2002, seismic anisotropy has become a mainstream topic in exploration geophysics. With the emergence of the shale resource play, the issues of seismic anisotropy have become central, because all shales are seismically anisotropic, whether fractured or not. With the advent of wide-azimuth surveying, it has become apparent that most rocks are azimuthally anisotropic, with P-wave velocities and P-AVO gradients varying with source-receiver azimuth. What this means is that analysis of such data with narrow-azimuth algorithms and concepts will necessarily fail to get the most out of this expensively acquired data. The issues include not only seismic wave propagation, but also seismic rock physics. Isotropic concepts including velocity, Young’s modulus, and Poisson’s ratio have no place in the discussion of anisotropic rocks, unless qualified in some directional way (e.g., vertical Young’s modulus). Likewise, fluid substitution in anisotropic rocks, using the isotropic Biot/Gassmann formula, leads to formal errors, because the bulk modulus does not appear, in a natural way, within the anisotropic P-wave velocity. This updated edition is now current as of 2014.




Seismic Reflection Processing


Book Description

Seismic Reflection Processing coherently presents the physical concepts, mathematical details and methodology for optimizing results of reservoir modelling, under conditions of isotropy and anisotropy. The most common form of anisotropy - transverse isotropy - is dealt with in detail. Besides, practical aspects in reservoir engineering - such as interval isotropic or anisotropic properties of layered media; identifying lithology, pore-fluid types and saturation; and determining crack/fracture-orientations and density - form the core of discussions. This book incorporates significant new developments in isotropic and anisotropic reflection processing, while organizing them to improve the interpretation of seismic reflection data and optimizing the modeling of hydrocarbon reservoirs. It is written primarily as a reference and tutorial for graduate/postgraduate students and research workers in geophysics.




Seismic Anisotropy


Book Description




Rock Quality, Seismic Velocity, Attenuation and Anisotropy


Book Description

Seismic measurements take many forms, and appear to have a universal role in the Earth Sciences. They are the means for most easily and economically interpreting what lies beneath the visible surface. There are huge economic rewards and losses to be made when interpreting the shallow crust or subsurface more, or less accurately, as the case may be.




Applied Seismic Anisotropy


Book Description