Selective Targeting of Cancer Cells with RNA Aptamers


Book Description

Two of the most commonly diagnosed malignancies in men and women are cancers of the prostate and breast, respectively. Though many advances have been made in reducing the overall morbidity and mortality associated with these diseases, the high number of deaths that still occur emphasizes the need for safer and more effective therapeutic options. To this end, our lab was the first to describe the use of RNA aptamers to specifically deliver cytotoxic siRNAs to PSMA positive prostate cancer cells. This reagent, termed an aptamer-siRNA chimera, was shown to be an effective targeted cancer therapeutic upon intratumoral injection in a pre-clinical, xenograft, mouse model of prostate cancer. However, further work was needed to realize the full clinical potential of RNA aptamer-siRNA chimeras as a targeted therapeutic modality. The thesis laid out herein, describes work performed to optimize aptamer-siRNA technology in order to enable clinical translation and to increase the scope of this technology (i.e. increase the cancer types for which this technology can be used). We describe several improvements to our first generation PSMA aptamer-siRNA chimera which, include: decreasing the overall nucleotide content to aid in chemical synthesis, altering the siRNA structure to improve RNAi processing and addition of a 20kDa PEG moiety to increase pharmacokinetics/pharmacodynamics. All of these modifications lead to a more effective reagent at lower doses. Importantly, we demonstrate that our optimized reagent is now effective upon systemic administration in an in vivo mouse model of prostate cancer. In addition, we have also identified new aptamers to the receptor tyrosine kinase (RTK) EphA2. Given the broad expression of this RTK on various cancers, this work seeks to extend the scope of targeted aptamer therapeutics beyond that of prostate cancer. Finally, we demonstrate a novel aptamer selection methodology termed cell-internalization SELEX. This approach allowed us to select for aptamers that specifically targeted and internalize into HER2 expressing cells. This allowed us to readily translate all identified aptamers into aptamer-siRNA chimeras. We show that all chimeras tested were able to sensitize HER2+ breast cancer cells to low- dose cisplatin treatment. Taken together, the work described in this thesis significantly advances the field of targeted cancer therapeutics. Importantly, by demonstrating cancer cell-specific delivery of siRNA, our technology overcomes one of the most significant hurdles to the therapeutic use of siRNAs, delivery.




Modification and Editing of RNA


Book Description

This Comprehensive, current text explores the manifold ways in which living cells respond to genomic injury and alterations, including both spontaneous and environmentally induced DNA damage. With more than 4,000 complete references to primary research literature and over 380 color figures throughout, this book is an important text for all courses in DNA repair and mutagenesis. It will also serve as a major reference for all molecular biologists working in cancer biology, recombination, transcription and gene regulation, DNA replication, environmental studies, and biological evolution.




Nucleic Acid Aptamers


Book Description

This volume provides protocol references covering recent developments in the aptamer field. Within the last decade, aptamers have become more and more popular, and their sophisticated biophysical properties together with their ability to be easily modified and, thus, adapted to various regimens makes them a very promising class of compounds. Divided into three sections, the book covers selection, a series of analytical methods to assess biophysical properties of aptamer-target interactions, as well as various applications of aptamers. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and easy to follow, Nucleic Acid Aptamers: Selection, Characterization, and Application provides a state-of-the-art summary of recent developments in the aptamer field and will be a helpful resource for scientists in the life sciences working with aptamers as tools to elucidate biological systems.




RNA Therapeutics


Book Description

RNA Therapeutics: The Evolving Landscape of RNA Therapeutics provides a comprehensive overview of RNA therapeutic modalities, from bench-to-bedside, with an emphasis on the increasingly impactful areas of gene therapy, oligonucleotide therapeutics, gene editing and delivery. International leaders in the field examine RNA-based therapeutics tools that have been developed to-date to modulate cellular processes such as transcription, translation and protein function. Approved RNA-based therapies and lessons learned from failed therapies are discussed in-depth, as are evolving advances in RNA biochemical analysis, and similar advances that are enabling clinical application of RNA-based therapies. Later sections discuss delivery technologies, remaining hurdles in research and translation, the therapy development process from the lab to the clinic, and novel RNA-based therapies currently in development. Features leading experts in the field of RNA therapeutics, spanning all classes of RNA therapies Provides a detailed examination of approved RNA therapies and lessons learned from failed therapeutics Covers all aspects of therapeutic discovery and preclinical development, as well as clinical translation, manufacturing and regulatory aspects




Aptamers for Analytical Applications


Book Description

An essential guide that puts the focus on method developments and applications in aptamers In recent years, aptamer-based systems have been developed for a wide-range of analytical and medical applications. Aptamers for Analytical Applications offers an introduction to the topic, outlines the common protocols for aptamer synthesis, as well as providing information on the different optimization strategies that can obtain higher affinities to target molecules. The contributors?noted experts on the topic?provide an in-depth review of the characterization of aptamer-target molecule interaction and immobilization strategies and discuss the developments of methods for all the relevant applications. The book outlines different schemes to efficiently immobilize aptamers on substrates as well as summarizing the characterization methods for aptamer-ligand complexes. In addition, aptamer-based colorimetric, enzyme-linked, fluorescent, electrochemical, lateral flow and non-labeling analytical methods are presented. The book also reflects state-of-the-art and emerging applications of aptamer-based methods. This important resource: -Provides a guide to aptamers which provide highly specific and sensitive molecular recognition, with affinities in the range of antibodies and are much cheaper to produce -Offers a discussion of the analytical method developments and improvements with established systems and beyond -Offers a comprehensive guide to all the relevant application areas -Presents an authoritative book from contributors who are noted experts in the field Written for analytical chemists, biochemists, analytical researchers, Aptamers for Analytical Applications is a comprehensive book that adopts a methodological point of view to the important aspects of aptamer generation and modification with a strong emphasis on method developments for relevant applications.




Therapeutic Oligonucleotides


Book Description

This book provides a compelling overall update on current status of RNA interference




Nanopharmaceuticals: Principles and Applications Vol. 3


Book Description

This book is the third volume on this subject and focuses on the recent advances of nanopharmaceuticals in cancer, dental, dermal and drug delivery applications and presents their safety, toxicity and therapeutic efficacy. The book also includes the transport phenomenon of nanomaterials and important pathways for drug delivery applications. It goes on to explain the toxicity of nanoparticles to different physiological systems and methods used to assess this for different organ systems using examples of in vivo systems.




Aptamers for Medical Applications


Book Description

This book outlines comprehensively the main medical uses of aptamers, from diagnosis to therapeutics in fourteen chapters. Pioneering topics covered include aptamer pharmaceuticals, aptamers for malign tumors, aptamers for personalized therapeutics and aptamers for point-of-care testing. The book offers an essential guide for medical scientists interested in developing aptamer-based schemes for better theranostics. It is therefore of interest for not only academic researchers, but also practitioners and medical researchers in various fields of medical science, medical research and bio-analytical chemistry.




CRISPR-Cas Enzymes


Book Description

CRISPR-Cas Enzymes, Volume 616, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Topics covered in this release include CRISPR bioinformatics, A method for one-step assembly of Class 2 CRISPR arrays, Biochemical reconstitution and structural analysis of ribonucleoprotein complexes in Type I-E CRISPR-Cas systems, Mechanistic dissection of the CRISPR interference pathway in Type I-E CRISPR-Cas system, Site-specific fluorescent labeling of individual proteins within CRISPR complexes, Fluorescence-based methods for measuring target interference by CRISPR-Cas systems, Native State Structural Characterization of CRISRP Associated Complexes using Mass Spectrometry, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods in Enzymology series - Updated release includes the latest information on the CRISPR-Cas Enzymes




RNA Nanotechnology


Book Description

In the past few decades there has been incredible growth in "bionano"-related research, which has been accompanied by numerous publications in this field. Although various compilations address topics related to deoxyribonucleic acid (DNA) and protein, there are few books that focus on determining the structure of ribonucleic acid (RNA) and using RNA as building blocks to construct nanoarchitectures for biomedical and healthcare applications. RNA Nanotechnology is a comprehensive volume that details both the traditional approaches and the latest developments in the field of RNA-related technology. This book targets a wide audience: a broad introduction provides a solid academic background for students, researchers, and scientists who are unfamiliar with the subject, while the in-depth descriptions and discussions are useful for advanced professionals. The book opens with reviews on the basic aspects of RNA biology, computational approaches for predicting RNA structures, and traditional and emerging experimental approaches for probing RNA structures. This section is followed by explorations of the latest research and discoveries in RNA nanotechnology, including the design and construction of RNA-based nanostructures. The final segment of the book includes descriptions and discussions of the potential biological and therapeutic applications of small RNA molecules, such as small/short interfering RNAs (siRNAs), microRNAs (miRNAs), RNA aptamers, and ribozymes.