Sensitivity of Phytoplankton to Climate Change


Book Description

Marine phytoplankton constitutes about half of the primary production on Earth. It forms the base of the marine food web and is a pivotal player in the marine biological carbon pump. The primary environmental drivers that control phytoplankton growth are temperature, nutrient availability, light, and the concentration of inorganic carbon species. Ongoing climate change modifies these drivers, leading to a warming, high-CO2 ocean with altered nutrient availabilities and light regimes. Changes in phytoplankton productivity and community composition resulting from these newly emerging environmental states in the ocean have important implications for the marine ecosystem and carbon cycling. Biogeochemical ocean models are used to investigate how marine primary production may be affected by future climate change under different emission scenarios. Phytoplankton growth rates in models are typically determined by functions describing growth dependencies on temperature, light, and nutrients. However, a large body of laboratory studies on phytoplankton responses to environmental drivers reveals two points that are usually not considered in current biogeochemical models. Firstly, phytoplankton growth can be considerably modified by the state of the carbonate system. Changes in inorganic carbon species concentrations can be either growth-enhancing (CO2(aq) and bicarbonate are substrates for photosynthesis), or growth-dampening (increasing CO2(aq) levels lead to a shift in the carbonate equilibria and result in a pH decrease, a process which is called ocean acidification). Functions describing this growth dependence of phytoplankton on the carbonate system have not been implemented in large-scale ocean biogeochemical models so far. Secondly, growth responses towards one driver can be modified if the level of another driver is changing. Functions including these so-called interactive driver effects partly exist in models (e.g. the response to varying light levels may depend on the nutrient limitation term). However, the large number of laboratory studies on multiple driver effects has never been used to constrain driver interactions in large-scale ocean biogeochemical models. This holds especially true for the findings of growth responses to driver interactions that include ocean acidification, which make up the largest share of laboratory experiments. This thesis aims to investigate sensitivities of marine phytoplankton to changing CO2(aq) levels as well as to interactive effects between CO2 and other environmental drivers. A comprehensive and reproducible literature search in combination with a statistical analysis (Publication I) reveals that increasing CO2(aq) levels robustly dampen the growth-increasing effects of warming and improving light conditions. In addition, the results show that the calcifying phytoplankton group of coccolithophores experiences the strongest negative effects by ocean acidification compared to other phytoplankton groups. A second study (Publication II) examines the effects of mechanistically described carbonate system dependencies on primary production and community composition in a model. To this end, carbonate system dependencies of phytoplankton growth and and coccolithophore calcification are implemented into the global biogeochemical ocean model REcoM. The study shows that responses to ocean acidification cascade on growth responses to other drivers, which partly balance or counteract the direct impact of the carbonate system on growth rates. In addition, warming is identified as the main driver of the observed recent increase of coccolithophore biomass in the North Atlantic. A final study (Publication III) investigates the interactive effects between CO2 and temperature as well as between CO2 and light on phytoplankton biomass and community composition in a high emission scenario. For the parametrization in REcoM, growth responses to interacting drivers as synthesized in Publication I are used. The decrease of global future phytoplankton biomass and net community production by the end of the century is similar in simulations with and without driver interactions (-6% and -8%, respectively). However, phytoplankton responses to future climate conditions are considerably modified on a regional scale and the share of individual phytoplankton groups in the community changes both globally and regionally when accounting for multiple driver effects. Globally, diatoms and coccolithophores are impacted more and small phytoplankton less severely by future oceanic conditions when accounting for driver interactions. Future projections of the Southern Ocean phytoplankton community are modified most dramatically with the new interactive growth formulation, as diatoms and coccolithophores become less and small phytoplankton more abundant, while it is the other way round in simulations without driver interactions. The thesis highlights 1) that the carbonate system is a critical growth-modifying driver for phytoplankton in a high-CO2 ocean, which can furthermore modify growth responses to other drivers substantially, and 2) that driver interactions have considerable effects on climate-change induced alterations in the phytoplankton community as well as on regional biomass changes in a future ocean.




YOUMARES 8 – Oceans Across Boundaries: Learning from each other


Book Description

This open access book presents the proceedings volume of the YOUMARES 8 conference, which took place in Kiel, Germany, in September 2017, supported by the German Association for Marine Sciences (DGM). The YOUMARES conference series is entirely bottom-up organized by and for YOUng MARine RESearchers. Qualified early career scientists moderated the scientific sessions during the conference and provided literature reviews on aspects of their research field. These reviews and the presenters’ conference abstracts are compiled here. Thus, this book discusses highly topical fields of marine research and aims to act as a source of knowledge and inspiration for further reading and research.




Shallow Lakes in a Changing World


Book Description

This volume comprises the proceedings of the 5th International Symposium on Shallow Lakes, held at Dalfsen, The Netherlands, in June 2005. The theme of the symposium was Shallow Lakes in a Changing World, and it dealt with water-quality issues, such as changes in lake limnology, especially those driven by eutrophication and pollution, increased nutrient loading and productivity, perennial blooms of cyanobacteria and loss of biodiversity.




The Response of Microalgae and Plankton to Climate Change and Human Activities


Book Description

The majority of global seafood production and mariculture activities take place in marine coastal water bodies, especially in areas of high primary productivity (from microalgae and plankton). This productivity sustains many forms of ecosystem services and promotes carbon dioxide absorption. However, climate change (ocean warming, acidification, oxygen loss, etc.) and anthropogenic disturbances (nutrients intrusion, aquaculture) have influenced the microalgae/plankton community assemblage and shifted it into a highly productive zone, causing a severe impact on the marine ecosystem, such as an increase in Harmful Algal Blooms, dead zone expansions, and coral-algal phase shifts. So far, there is still little knowledge on the mechanisms of microalgae/plankton community response to these changing environmental conditions. Harmful microalgae impair the marine ecosystem through the production of the so-called shellfish toxins, which cause shellfish contamination and poisoning to the vertebrates, including humans. In addition, some microalgae produce fish-killing toxins (ichthyotoxins), causing increasing damage to marine aquaculture. Besides that, the high productivity/bloom of microalgae in the water due to coastal eutrophication from anthropogenic activities is known to induce hypoxic-anoxic conditions causing a severe economic impact on aquaculture.




Ocean Acidification


Book Description

The ocean has absorbed a significant portion of all human-made carbon dioxide emissions. This benefits human society by moderating the rate of climate change, but also causes unprecedented changes to ocean chemistry. Carbon dioxide taken up by the ocean decreases the pH of the water and leads to a suite of chemical changes collectively known as ocean acidification. The long term consequences of ocean acidification are not known, but are expected to result in changes to many ecosystems and the services they provide to society. Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean reviews the current state of knowledge, explores gaps in understanding, and identifies several key findings. Like climate change, ocean acidification is a growing global problem that will intensify with continued CO2 emissions and has the potential to change marine ecosystems and affect benefits to society. The federal government has taken positive initial steps by developing a national ocean acidification program, but more information is needed to fully understand and address the threat that ocean acidification may pose to marine ecosystems and the services they provide. In addition, a global observation network of chemical and biological sensors is needed to monitor changes in ocean conditions attributable to acidification.




Phytoplankton responses to human impacts at different scales


Book Description

Phytoplankton responses to human impact at different scales provides a state-of-the-art review of changes in the phytoplankton assemblages determined by human alterations of lakes and rivers. A wide spectrum of case studies describe the effects due to eutrophication and climate change, as well as other impacts connected with watershed management, hydrological alterations and introduction of non-indigenous species. The volume also includes two wide reviews on planktonic coccoid green algae and planktic heterocytous cyanobacteria. This book is addressed to ecologists and scientists involved in phytoplankton ecology and taxonomy. Many case studies provide a sound scientific basis of knowledge for a wise management of water bodies. Previously published in Hydrobiologia, vol. 698, 2012




Plankton Ecology


Book Description

All relevant ecological aspects of plankton, especially seasonal changes in the species composition, the role of competition for limiting resources in species replacements, the role of parasitism, predation and competition in seasonal succession are treated in detail considering phytoplankton, zooplankton and bacteroplankton. In addition to its use as a valid reference book for plankton ecology, this monograph may well be used as a model for other kinds of ecological communities.




The Ecology of Phytoplankton


Book Description

This important new book by Colin Reynolds covers the adaptations, physiology and population dynamics of phytoplankton communities. It provides basic information on composition, morphology and physiology of the main phyletic groups represented in marine and freshwater systems and in addition reviews recent advances in community ecology.




Physiological Effects and UVB Sensitivity in the Marine Phytoplankton Emiliania Huxleyi in Response to Elevated Carbon Dioxide Concentration and High Photon Flux


Book Description

Anthropogenic activities are having a range of important impacts on the global climate, including increased carbon dioxide (C02) in the atmosphere and an increase in ultraviolet B (UVB) radiation reaching the earth's surface. The marine coccolithophore, Emiliania huxleyi, is of global biogeochemical importance, due to its capacity to form very dense blooms, its ability to produce calcium carbonate scales (coccoliths) and its consequently major role in the global carbon cycle. Hence this study investigated the impact of various climate change factors on the growth, photosynthesis and nutrient uptake in E. huxleyi. Semi-continuous cultures of two strains of E. huxleyi (a non-calcifying and a calcifying strain) were grown at CO2 concentration corresponding to either the present day (380 ppm) or those predicted for 2100 (1000 ppm), and at either low light (80 ~mol photons m-2 S-I) or high light (250 ~mol photons m-2 S-I). Growth rates, rapid light curves (RLCs), phosphorus and nitrogen uptake rates, and activities of the enzymes nitrogen reductase (NR) and glutamine synthetase (GS) were measured. Cellular carbon, nitrogen and phosphorus contents and C:N:P ratios were measured in the non-calcifying strain. The sensitivity of these parameters to exposure to an acute dose of UVB radiation was also assessed. Elevated C02 concentration negatively affected growth rates in both strains of E. huxleyi investigated, although in the non-calcifying strain high PAR (photosynthetically active radiation) partially reversed the negative effects of CO2 concentration. The specific impacts of C02, whether direct or indirect, on E. huxle)'i physiology are still unclear from this study. However, low pH due to elevated CO2 concentration has been suggested to impact on cellular function and hence may impact on growth. Several physiological parameters were sensitive to high light. These included photosynthetic parameters (rETRmax and NPQ) and the activity of the main rate-limiting enzyme involved in nitrogen assimilation, glutamine synthetase. Whether high light directly damages the enzyme or if damage to photosynthesis indirectly affects nitrogen assimilation through a decrease in energy availability is unclear from this study. In both strains of E. huxleyi investigated, neither elevated CO2 nor light levels led to an increased susceptibility of the physiological parameters measured to short -term UYB exposure. Each environmental factor studied impacted negatively on E. huxleyi. Interestingly however, neither elevated CO2 nor high light intensity increased the susceptibility of cells to damage by acute UYB exposure. This suggests that under future predicted climate scenarios, while the two strains of E. huxle.vi investigated may be less competitive, they will not be further disadvantaged in high UYB conditions close to the ocean surface. Given the global importance of E. fluxle.-vi as a species, the negative impacts under predicted future climate scenarios are of global significance.




Plankton


Book Description

Healthy waterways and oceans are essential for our increasingly urbanised world. Yet monitoring water quality in aquatic environments is a challenge, as it varies from hour to hour due to stormwater and currents. Being at the base of the aquatic food web and present in huge numbers, plankton are strongly influenced by changes in environment and provide an indication of water quality integrated over days and weeks. Plankton are the aquatic version of a canary in a coal mine. They are also vital for our existence, providing not only food for fish, seabirds, seals and sharks, but producing oxygen, cycling nutrients, processing pollutants, and removing carbon dioxide from our atmosphere. This Second Edition of Plankton is a fully updated introduction to the biology, ecology and identification of plankton and their use in monitoring water quality. It includes expanded, illustrated descriptions of all major groups of freshwater, coastal and marine phytoplankton and zooplankton and a new chapter on teaching science using plankton. Best practice methods for plankton sampling and monitoring programs are presented using case studies, along with explanations of how to analyse and interpret sampling data. Plankton is an invaluable reference for teachers and students, environmental managers, ecologists, estuary and catchment management committees, and coastal engineers.