The Subsonic Static Aerodynamic Characteristics of an Airplane Model Having a Triangular Wing of Aspect Ratio 3


Book Description

An investigation has been conducted to determine the effects of vertical-tail location and size on the subsonic aerodynamic characteristics of a model having a triangular wing. The wing had an aspect ratio of 3, an NACA 0003.5-63 section in the streamwise direction, and plain, trailing-edge ailerons. The wing was attached to the fuselage in either a mid or high position and an unswept horizontal tail was located on the fuselage center line. Two vertical tails were tested which had areas of 26.7 or 20.3 percent of the wing area. Each vertical tail was equipped with a rudder and had a geometric aspect ratio of 1.5, a taper ratio of 0.16, and 54 degrees of sweepback of the leading edge. Each vertical tail was tested at two different tail lengths. The wind-tunnel tests were conducted at a Reynolds number of 2.5 milMon at Mach numbers from 0.25 to 0.95.













Static Longitudinal Characteristics at High Subsonic Speeds of a Complete Airplane Model with a Highly Tapered Wing Having the 0.80 Chord Line Unswept and with Several Tail Configurations


Book Description

An investigation was made at high subsonic speeds of a complete model having a highly tapered wing and several tail configurations. The basic aspect-ratio-4.00 wing had a zero taper and an unswept 0.80 chord line. Several aspect-ratio modifications to the basic wing were made by clipping off portions of the wing tips. The complete model was tested with a chord-plane tail, a T-tail, and a biplane tail (combined T-tail and chord-plane tail). The model was tested in the Langley high-speed 7- by 10-foot tunnel at Mach numbers from 0.60 to 0.92. The data show that, when reduced to the same static margin, all the tail configurations tested on the model provided fairly good stability characteristics, the biplane tail giving the best overall characteristics as regards pitching-moment linearity. Changes in static margin at zero lift coefficient with Mach number were small for the model with these tails over the Mach number range investigated.