Stochastic Flows in the Brownian Web and Net


Book Description

It is known that certain one-dimensional nearest-neighbor random walks in i.i.d. random space-time environments have diffusive scaling limits. Here, in the continuum limit, the random environment is represented by a `stochastic flow of kernels', which is a collection of random kernels that can be loosely interpreted as the transition probabilities of a Markov process in a random environment. The theory of stochastic flows of kernels was first developed by Le Jan and Raimond, who showed that each such flow is characterized by its -point motions. The authors' work focuses on a class of stochastic flows of kernels with Brownian -point motions which, after their inventors, will be called Howitt-Warren flows. The authors' main result gives a graphical construction of general Howitt-Warren flows, where the underlying random environment takes on the form of a suitably marked Brownian web. This extends earlier work of Howitt and Warren who showed that a special case, the so-called "erosion flow", can be constructed from two coupled "sticky Brownian webs". The authors' construction for general Howitt-Warren flows is based on a Poisson marking procedure developed by Newman, Ravishankar and Schertzer for the Brownian web. Alternatively, the authors show that a special subclass of the Howitt-Warren flows can be constructed as random flows of mass in a Brownian net, introduced by Sun and Swart. Using these constructions, the authors prove some new results for the Howitt-Warren flows.







Brownian Motion


Book Description

Stochastic processes occur everywhere in the sciences, economics and engineering, and they need to be understood by (applied) mathematicians, engineers and scientists alike. This book gives a gentle introduction to Brownian motion and stochastic processes, in general. Brownian motion plays a special role, since it shaped the whole subject, displays most random phenomena while being still easy to treat, and is used in many real-life models. Im this new edition, much material is added, and there are new chapters on ''Wiener Chaos and Iterated Itô Integrals'' and ''Brownian Local Times''.







Brownian Motion


Book Description

Following the publication of the Japanese edition of this book, several inter esting developments took place in the area. The author wanted to describe some of these, as well as to offer suggestions concerning future problems which he hoped would stimulate readers working in this field. For these reasons, Chapter 8 was added. Apart from the additional chapter and a few minor changes made by the author, this translation closely follows the text of the original Japanese edition. We would like to thank Professor J. L. Doob for his helpful comments on the English edition. T. Hida T. P. Speed v Preface The physical phenomenon described by Robert Brown was the complex and erratic motion of grains of pollen suspended in a liquid. In the many years which have passed since this description, Brownian motion has become an object of study in pure as well as applied mathematics. Even now many of its important properties are being discovered, and doubtless new and useful aspects remain to be discovered. We are getting a more and more intimate understanding of Brownian motion.




Brownian Motion and Stochastic Flow Systems


Book Description

Here is a systematic discussion of Brownian motion and Ito stochastic calculus. Develops the mathematical methods needed to analyze stochastic processes related to Brownian motion and shows how these methods are used to model and analyze various stochastic flow systems such as queueing and inventory systems. Emphasizes stochastic calculus and models used in engineering, economics, and operations research. Topics include stochastic models of buffered flow, the backward and forward equations, hitting time problems, regulated Brownian motion, optimal control of Brownian motion, and optimizing flow system performance.




Handbook of Brownian Motion - Facts and Formulae


Book Description

Here is easy reference to a wealth of facts and formulae associated with Brownian motion, collecting in one volume more than 2500 numbered formulae. The book serves as a basic reference for researchers, graduate students, and people doing applied work with Brownian motion and diffusions, and can be used as a source of explicit examples when teaching stochastic processes.




Dynamical Theories of Brownian Motion


Book Description

These notes are based on a course of lectures given by Professor Nelson at Princeton during the spring term of 1966. The subject of Brownian motion has long been of interest in mathematical probability. In these lectures, Professor Nelson traces the history of earlier work in Brownian motion, both the mathematical theory, and the natural phenomenon with its physical interpretations. He continues through recent dynamical theories of Brownian motion, and concludes with a discussion of the relevance of these theories to quantum field theory and quantum statistical mechanics.